- The Cybernetic Crayon

Thomas A Dwyer

Leon Sweer

Soloworks Lab
University of Pittsburgh
Pittsburgh PA 15260

The Cromemco TV Dazzler (described in
BYTE No. 10, June 1976, page 6) is one of
the most interesting (as well as economical)
peripherals available for displaying computer
output. It literally puts a picture of what’s in
your computer’s memory on a home color
TV set. The simplicity of this idea cuts
through all the complexities that expensive
color graphics systems (some costing over
$100,000) have presented to ‘“ordinary”
computer users in the past. The potential
applications of low cost color graphics,
especially in learning environments of the
type we have been developing at Soloworks
[The Soloworks lab is concerned with using
computers in education as tools for support-
ing student creativity. A newsletter de-
scribing the project is available from author
Dwyer.], are almost endless.

At the present time there are two obsta-
cles to using the Dazzler to its full potential.
The first is difficulty in programming. Most

24

A Low Cost Approach to
Human Interaction with Color Graphics

users find it inhibiting to work at the
machine language (or even assembly lan-
guage) level. There isn't any doubt that color
graphics will really take off in educational
and home computing when simple user
oriented graphic instructions become avail-
able in higher level languages like BASIC.

The second problem that needs to be
attacked is the lack of human-oriented input
devices that allow one to interactively
“play” with color graphics. It is of course
impressive to see what a clever programmer
can do by loading in carefully written
machine language graphics demonstrations.
But the real future is in making computers
responsive to control actions that mirror the
“macro” ideas of human imagination and
even fantasy. It’s the difference between
sitting in the back of an airplane admiring
how clever your captain is, and moving into
the pilot’s seat with a chance to do a few
lazy eights around the sky yourself,

CRAYON

Graphics Software

Some of the people at Dartmouth
(Arthur Luehrmann in particular) are work-
ing at defining a set of graphic extensions for
the language BASIC. This is a good idea, but
it's slow work. Getting different groups with
different interests to agree on anything is
pretty difficult. We'll be following this activ-
ity at Soloworks, and may try extending one
of the microcomputer versions of BASIC in
this direction. In the meantime, we think
much attention also needs to be given to
what people may want to do with graphics,
especially the low cost type.

One way to do this is to ‘“imagine”
something you'd like to do, and also
“imagine” a language for instructing the
computer to do this. You can then try to
write subroutines in assembly language to
implement these macro instructions. True,
that’s hard work, but eventually the detailed
code could be hidden from the user (pos-
sibly in BASIC, or possibly in ROM). Then
programmers (including young children)
could do most of their thinking at the higher
level.

Let’s illustrate this idea by looking at a
first attempt we made along these lines in
defining what we call our ‘“cybernetic
crayon box.” We had lots of ambitious ideas
for using the Dazzler, but decided to start
very simply. Our thinking was that new
features could then be added one at a time
in the form of additional subroutines. In
other words, the approach we took was to
build a total system from what are usually
called program ‘“modules.” (It's worth
noting that this is a good idea for most large
programs where clarity is essential. In fact
it's the basic idea behind the new rage for
what is called “structured programming.”)

COLOR TV

v

Ol com
00

PORT 10

CRAYON MEMORY DAZZLER

PORT 11

ERASE SWITCH
~—

PROGRAM[™| [

-

—~
v O 0OO0OO0 cororortion

SWITCHES

IMSA| 8080

The Cybernetic Crayon ldea

Let’s imagine that we want to make the
system of figure 1 possible. The idea is that
it would be neat if a child could move some
kind of electronic ‘‘crayon” around and
experiment with drawing colored pictures on
a TV screen. In the back of our heads was
the thought that it would be even neater if a
“big” child (guess who) could drive a space
ship around a full color galaxy in some
futuristic Star Trek type game.

Let’s imagine a computer program to do
this using an imaginary high level language.
It might look like the following:

1. Turn on the Dazzler and start dis-
playing memory.

2. If desired, erase memory (to get a
blank screen).

3. Look at where the crayon is pointed.

4. See what color it is.

5. Decode this information into proper
machine language.

6. Now put information into the com-
puter’s memory for display.

7. Go back to step 3.

The ‘“hardest’ parts are steps 2, 3, 5, and 6.
We decided to make step 3 “‘easy’’ by using a
special piece of hardware, an $80 surplus XY
digitizer which was sold by Delta Electronics
Co (their ad appeared in the May 1976 issue
of BYTE). Steps 2, 5, and 6 were handled by

software subroutines that can be thought of

as simulating macro instructions. Let’s look
at each of these four steps in further detail.

Using an XY Digitizer as the Crayon

There are several options for the
“crayon.” One would be a light pen. An-
other would be a two axis joystick. The

25

Figure 1: The Cybernetic
Crayon System. The XY
digitizer position is set by
the young artist, and inter-
preted by the 8080 pro-
cessor running a program
shown in Listing 1. This
program uses the position
information along with the
settings of -front panel
switches to determine the
color value of each posi-
tion in the picture as it is
drawn,

e ——

third possibility is to use what’s called an
XY digitizer. All of these devices can be
expensive, since they usually require special
interfacing electronics. The exception to this
rule is when the devices produce digital data
directly, either through brush type contacts
or optical disks that control the light falling
on photo electric cells. We chose to use an
XY digitizer with brush contacts, partly
because it was available as surplus, and
partly because the XY frame of reference
looked like a good way to help even very
young students learn about Cartesian co-
ordinate systems (more about this later).

How the Digitizer Works: the Gray Code

The digitizer is a mechanical device which
works something like a plotter in reverse.
When the user moves the pointer (what we
call the crayon), this moves two sets of
contacts to positions corresponding to the X
and Y coordinates of the crayon. These
brushes slide across metal templates that
look something like the pattern in figure 2.

The output for each coordinate is a 7 bit
binary number. This means that 128 values
(2**7) for each coordinate are possible.
Each output can be connected directly to
one 8 bit parallel input port of your micro-
computer. The way the digitizer is wired,
each bit that is enabled by the digitizer (that
is, contacted by a brush) is grounded.
Therefore it is necessary to complement the
number read from the port before further

processing. Thus the input pattern (1, 1, 0,
1,0,0,1) becomes (0,0,1,0, 1,1, 0).

The second trick to using this particular
digitizer involves decoding the patterns used

" on the templates for representing X (and Y)

positions. Instead of using a standard in-
crementing binary code to represent values
for X and Y, the digitizer templates use
what’s called a Gray code. The way that this
code represents the X and Y positions
between 0 and 127 is shown in figure 2. One
may ask, why not use a standard binary code
instead of this ‘“‘strange’ version? The reason
becomes apparent when one examines each
successive number representation. Note that
only .one bit ever changes between two
consecutive positions {or numbers). On the
other hand, if the conventional form of
binary code were used, many instances
would occur in which several bits would
have to change at once. (eg: 0111 to 1000
for 7 to 8). This must be avoided because it
would be impossible for a low cost mechan-
ical device to succeed in changing all the bits
at exactly the same time. Instead, the
computer (being as obedient as it is) would
read incorrect values as the bits changed. Use
of the Gray code solves this problem, but
requires that some means be used to trans-
late back into the standard binary code
expected by your computer.

The following algorithm will translate the
Gray coded numbers into standard binary
codes. An example helps to illustrate.

GRAY PATTERN GRAY CODE BINARY CODE DECIMAL

]

I T1I T T 7T1
N DO T O S O |

T T T 17

0000000 0000000 0
0000001 0000001 1
0000011 0000010 2
0000010 0000011 3
0000110 0000100 4
0000111 0000101 5
0000101 0000110 6
0000100 0000111 7
0001100 0001000 8
0001101 0001001 9
0001111 0001010 10
0001110 0001011 11
0001010 0001100 12
0001011 0001101 13
0001001 0001110 14
0001000 0001111 15
0011000 0010000 16
0011001 0010001 17
0011011 0010010 18
0011010 0010011 19

0011110 0010100 20

Figure 2: Detaqil of the Cybernetic Crayon’s Surplus Digitizer. The rough artwork of an image may be drawn on paper, or the
image can be created without such a layout. The Gray code pattern of the inputs can be seen in diagram form and equivalent

binary form at the right.

26

Problem: Change Gray code 0110100
into a standard 7 bit binary code.

Example
(in the
example,
x's indicate
bits yet to
be deter-
mined, ini-
Step tially zero.)
1. Look at the high Bitis O
order {left most) bit
first,
2. Is the exclusive or No
(XOR}) of this bit and
all bits to its left 1?7
3. Put a 0 in the high RT =
order bit of a “run- OXXXXXX
ning total” RT.
4, Look at next bit. 1
5. 1s the XOR of this bit Yes
and all bits to its left

1?
6. Then put a 1 bit in RT =
RT on right. 0Txxxxx
7. Look at next bit. 1

8. Is the XOR of this bit No
and all bits to its left

1?

9. Put a 0 bit in RT on RT =
right. 010xxxx

10. Look at next bit. 0

11. Continue until fin- etc.
ished.

Using this algorithm, you can see that
0110100 decodes at the test with exclusive
OR to (NO, YES, NO, NO, YES, YES,
YES), that is, to 0100111 {which is decimal
39). It is fairly easy to write a program for
an 8080 or any other processor which does
this, and it is shown in listing 1, relative
addresses 004D to 0066. It will be part of
our final crayon program. The variable C is
where RT is kept in binary form, using the
trick of putting higher order bits in at the
right, and then shifting them (rotating) to
the left until 7 bits have been accumulated.
The Gray code is in A at the start.

DCR £ ;s COUNT DOWN LOOP

MoV AyE

JNZ Loop

MOV A,C $PUT BINARY CODE IN A
RET

A Subroutine for Erasing Memory

If we want to draw a picture in the
“memory space” of our computer, the first
thing we may want to do is erase the space.
This is accomplished simply by writing zeros
in each location. The routine in listing 1,
relative addresses 009B to 0048, erases
memory, beginning at the location specified
in the 8080’s HL register pair, and erases a
number of locations equal to 256 times the
number in the A register. (It’s a good idea to
keep subroutines such as this as general as
possible when developing flexible software.)

JROUTINE TO ERASE 256*A BYTES STARTING AT H,L

ERASE: MVI D,0 ;s CLEAR D,E
MOV E,D
M1 M,0

NEXT: INX H - $ADVANCE POINTER
MVl M,0 3 CLEAR THAT BYTE
INX b 7 INCREMENT COUNTER -
CMP D $SEE IF A BYTES WRITTEN
JNZ NE XT 3 IF NOT, GO BACK .
RET
END

It will be seen later (in the main program)
that the erase routine is called by flipping
the left most switch of the ‘“programmed
input” register on the IMSALI front panel.

A Subroutine for Mapping XY
Coordinates Into Memory

Before showing how to translate (or
“map”) the decoded X and Y values into a
memory location to be used as part of our
TV picture, it is useful to understand how
the Dazzler works. In particular, we want to
know something about how it interprets a
block of memory and translates it into a
color TV picture element. :

The Dazzler uses two output ports of the
microcomputer. Through these two ports,
the computer tells the Dazzler whether to
turn itself on, where in memory the picture
begins, how many bytes the picture com-
prises {the choices are 512 or 2048), and
what type of picture (color and resolution)
should be displayed on the TV. The output
to the TV comes directly from the Dazzler.

Figure 3: Color Command
Word of the TV Dazzler.
This is the layout of each
4 bit nybble in the color
display memory region of

; ROUTINE TO DECODE GRAY CODE
DECOD: MVI C,0 iCLEAR REG. C
MoV D,C
M1 E,7 $ INITIALIZE LOOP
MOV B,A iPUT GRAY CODE IN B 2048 bytes.
LOOP: MOV A,
RLC ;ROTATE C LEFT
MoV c.A _
MoV A,B
RLC iROTATE B LEFT COLOR COMMAND WORD
MoV 8,A
AN1 8OH $MASK ALL BUT MSB
RLC ;PUT MSB IN LSB msB 1 0 Y 1 Ls8
XRA D $XOR IT WITH ALL HIGHER ORDER BITS
MOV D,A $REPLACE RESULT
ADD c $PLACE IN LSB OF C INTEN- B UE GREEN RED
MOV C,A SITY

27

o

64 Rows

LOCATIONS RELATIVE TO STARTING LOCATION

32 half bytes

32 half bytes

(0 —+ 15 512 — o 527

< 496 ——— 511 1008 ————— 1023
1024 ————=1039 1536 ————=1551

\ 1520 1536 2032 ————=2047

Figure 4: Memory Map of the Dazzler Peripheral, This map correlates the dis-
played picture to the array of memory bytes., The addresses are indicated here
in decimal,

Listing 1: The Cybernetic Crayon Program. This shows the complete assem-
bly listing (relative to address 0). The major subroutines discussed separately
in text are the gray code conversion routine DECOD, the memory clearing
ERASE, and the address calculation routine TRANS.

0go00
0000
oooe
0002
0004
0006
0008
0008
gooD
000E
0011

0014
0016
00t¢
0018
001C
001F
0020
goa22
0023
0026
0027
6p28
0g2Aa
002D
002F
003t

0032
0034
6035
0038
0039
003a
003B
003cC
003D
003E
003F
0041

0042
0045

0046
0048
0049
004A
004D
004D
004D
004F
0050
0052
0053
0054
0055
0056
0057
0058

3E

3E
D3
31

DB
17
D2
21

3JE
]
DB
2F

67
DB
2F
CD
4F
44
1E
CD
DB
E6
4F
3E
Ba
CA
79
07
07
07
07
4F

Eé6
Bl

Cc3
7E
E6
Bl

117
c3

0E
51

i1E
a7
79
07
4F
78
07
a1

88
30
17
EF
FF
19
00
08
9B
10

4D
11

4D
10

67
FF
oF
0o

45

oF

49

Fo

0B

00

07

g0

00
10

go

00

00

iMAIN PROGRAM
ORG
MVI
T
MVI
T
LX1:
INPUT: IN
.RAL
JNC
LX1
MVI
CALL
NOERS: IN
CMA
CALL
MOV
iN
CMA
CALL
MOV
MOV
MU 1
CALL
IN
ANI
MOV
MUl
CMP
Jz
MOV
RLC
RLC
RLC
RLC
MOV
MoV
ANI
ORA
JMP
MoV
ANI
ORA
MoV
JMP

SNOT:

STUFF ¢

0

A,B88H
16H
A,30H
17H
SP,0EFH
O0FFH

NOERS
H,1000H
A,08H
ERASE
10H

DECOD
H,A
1IH

DECOD
C,A
B,H
Es10H
TRANS
O0FFH
OFH
C,A
A,D

D
SNOT
A,C

C,A
AyM
0FH

c
STUFF
A,M
OFO0H
C

M,A
INPUT

16

$TURN ON DAZZLER
;"

; -

H

i SET STACK POINTER

$GET SWITCHES

§CHECK FOR MSB

3 IF NOT SET, GO GET POINTS
;IF SET, LOAD H,L AND A
$AND CALL ERASE

3GET X DATA FROM CODER

s COMPLEMENT X

iTRANSLATE X INTO BINARY

3 SAVE X

3GET Y DATA FROM CODER

3 COMPLEMENT Y

3 TRANSLATE Y INTO BINARY

3SAVE Y

sPUT X IN B

;LOAD HIGH ORDER STARTING ADD OF PIC
$ TRANSLATE INTO MEMORY ADDRESS
sREAD SWITCH REGISTER

s SCREEN QUT OTHER SWITCHES

3 SAVE SVWITCH REGISTER

$1F REGISTER D=0

’

$THEN GOTO SNOT

$GET SWITCH REGISTER

3SHIFT LEFT 4 BITS

3RETURN TO C

$GET OLD WORD IN DESIRED LOC
$iGET RID OF THIS HALF

$PUT IN NEV GROUP

OLD WD IN DESIRED LOC
3GET RID OF HALF

sPUT IN NEW GROUP

$WRITE NEW WORD IN M

$GET ANOTHER POINT

$GET

H
3 ROUTINE TO DECODE GRAY CODE

DECOD: MVI
MOV
MVI
MoV
MOV
RLC
MOV
MOV
RLC
MOV

LOOP:

$CLEAR REG. C

s INITIALIZE LOOP
JPUT GRAY CODE IN B
i ROTATE C LEFT

$ROTATE B LEFT

28

All these functions are represented on the
output ports of the IMSAI 8080 we used, as
follows:

Port 16: Bits O to 6 contain the most
significant 7 bits of the starting
picture address. Note that only
multiples of 512 are possible.

Port 17: Bit 6 is a resolution multiple of 4 if
on, normal if off.

Bit 5 is a picture in 2 K bytes of
memory if on, 512 bytes if off.

Bit 4 is a color picture if on, black
and white picture if off.

Bits 0 to 3 are intensity and color
bits used only in high resolution
mode. We will not be concerned
with these 4 bits.

It is not necessary to understand all of
these options and modes to use the Cyber-
netic Crayon. We will therefore concentrate
on the mode in which 2 K of memory is
used, and in which each byte represents two
picture elements (small rectangles). In this
mode, the picture is composed of 4098 (64
by 64) such elements, the color and inten-
sity of each element being specified by one
half of a byte (called a color command
word). Each half byte has the meaning to
the Dazzler shown in figure 3.

The command word shown in our example
is for “high intensity red.”” Another important
thing to understand about the Dazzler is that
it is able to read memory on its own, just
like the computer, and at the same time that
the computer is running its own program.
This is called Direct Memory Access (DMA).

Once the computer tells the Dazzler
(through ports 16 and 17) where the picture
starts, the Dazzler simply takes over and
puts the picture right on the screen. Every
1/30th of a second it reads through the
entire 2 K of memory and displays it. This
arrangement means that the computer can
be changing the picture at the same time it is
being displayed.

The way in which the Dazzler reads
memory can be seen with the illustration of
figure 4.

We see that the picture is divided into
four quadrants. As the Dazzler reads across a
sequence of locations, beginning with the
starting location, it displays the least sig-
nificant half byte first. It is important to
remember this when figuring out exactly
where in memory a particular color com-
mand word should go.

Let’s now go back and see if we can piece
this information together to enable us to
translate our XY coordinates from the digiti-
zer into a memory location that will cor-

respond to the same place in the Dazzler - Listing 1, continued:
picture. A I(_)glcal way to 8o about thI.S is to 0059 E6 80 ant gon \MASK ALL BUT MSB
load a register pair with the beginning 0658 07 ALC $PUT MSB IN LSB
H H 005C AA XRA D $XOR IT WITH ALL HIGHER ORDER BITS
address of the picture, apd then add to this boop on nov b.a I REPLACE RESULT
address an amount derived from the XY 00SE 81 ApD c ;PLACE IN LSB OF C
. L . 00SF 4F M
coordinates. We could envision the following 3060 1D oeR . E COUNT DOWN LOOP
sequence of events: il I A
. 0065 79 MOV A,C 3 PUT BINARY CODE IN A
1. Load register pair with picture starting 0066 C9 RET)
; 0067 ;
|0C3t|0n. . 0067 ;RQJTINE WHICH TRANSLATES B,C INTO ADDRESS IN H,L
2. Ask: ‘““What quadrant are we in?"” That 0067 IE MUST CONTAIN' PICTURE STARTING ADDRESS (HOST SIG HALF)
H 0067 78 TRANS: MOV A,B s PUT X Al
s, “are X or Y or bOth > 64?” |fX > 0068 E6 40 ANI 46}! ;GET RID OF ALL BUT 64 BIT]
64, we are in the right half of the nosg f: 73 00 ;lfm QuADL ;;;ngngo(gmw GO AROUND |
006 £ ; |
screen, and must add 512 to the G0GE IC INR £ ’ ‘
starting location. If Y > 64, we are in gggg ;g a0 ?3“{ A8 - . suB 64 FROM B r
’
the bottom and must add 1024 to the 0072 47 MOy 3.4 GET v COORD ‘ ,
: : 0073 79 QUADL: MOV , ; Y 1
Startlng Iocat‘on' (If bOth are true we 0074 E6 40 ANI 40H ;GE_T RID OF ALL BUT BIT 64 i
add both.) 0076 GA 81 00] Jz QUADU jIF ZERO (Y<64) GO AROUND ;
. 0079 78 MOV A,E :
3. Subtract 64 from X or Y if they are 007A C6 04 ADI oz’.u ; INCREMENT THIRD BIT OF E ?
greater than 64. This way, every point gg;g ?I*; :% i:‘é .SUB 64 FROM C i
would be translated into the first 007E DE 4 SBI A0H '
. . - MOV C,A
quadrant, with X and Y values ranging B 2% QUADUS | MOV Ao JGET X AGAIN
from O to 63, 0082 OF RRC ;DlUng g: 2 oain
. . 0083 1IF RAR i DIVID 2 A !
4. Add the final displacement to the 0064 47 MOV B,A {STORE IN B ‘
i i . 0085 3E 00 MUI A,0 ;CLEAR A :
regxster_palr as follows.. poss 3= e . R RARRY IN A |
A. Multiply Y by 8; this translates the 0088 57 MoV D,A $ STORE CARRY IN D i
6089 78 MoV A,B $GET X/4 AGAIN
range frOm 0'63 to 0'504' 008A E6 OF ANl l]l'"H ;ZERD HIGHER HALF-WORD
B. Mask out last four bits to have this ongc 1_;; :% 22 ;égggvlﬂeim
008D H
address at far left of quadrant 008E 07 RLC ! 3 MULTIPLY BY 8,
()(:0) 008F 07]LC
N 0090 17 RAL
C. Divide X(0-63) by 4 to get 0-15, 0091 D2 95 00 JNC LOWER ;IF NO CARRY, DONT INCREMENT E
H H 0094 1C INR E
remembering the right hand carry 0095 E6 FO LOVER: ANI 0FOH $DUMP LOWER HALF-WORD
bit to determine which half word to ggg; 80 :gg E . ;ﬁgEDXLDISPLACEMENT
. cpat . . 6F ’ H
write (done by shifting right twice). 0099 63 MoV HoE ;LOAD H
D. Add this to the address calculated paoe @ . RET
’
from Y. Now add total result to the 009B ;ROUTINE TO ERASE 256*A BYTES STARTING AT H,L
1 009B 16 00 ERASE: MVI D,0 $CLEAR D,E
previously calculated quadrant 009D 5A MoV £'D
address. 009E 36 00 M1 M, 0
00A0 23 NEXT: INX H $ADVANCE POINTER
. = = 1 1 00A1 36 00 MV I M,0 ;CLEAR THAT BYTE
Example: X=47, Y=71. Picture begins at P X iy S INGREMENT COUNTER
memory location 4096. 00A4 BA cMp D r 'fEENé: Aagvgié‘xvmnan
H H 00A5 C2 A0 00 JNZ X it
1. Load H,L registers with 4096. 008 ©5 RET " ’
2. X < 64 while Y > 64. So add 1024 to 00A9 END
H,L. (We are in lower, left quadrant). into a Dazzler byte location, and places it in
3. Su_bttragctx_6217 f{(o_"; Y, so translated the HL register pair. At the time it is called,
4 ZO';‘ 'Ist' I— \’(b— .8 9X8=72 (h register E must contain the most significant
) T d witip Iy48) y e exa- half of the starting address of the picture. At
* B N::a'r(na l. 4 bi 64 thejend of the routine, register D is equal to
’ has out (Twzrg Ar\lltlg tfc;oget. 1 i1] the most significant half of the byte is to
‘(me;xademma gives be 'used, and equal to O if the least signif- i
| 2 icant is to be used. |
]' C. Divide X by 4. 47/4 = 11. Carry |
i bit=1. JROUTINE WHICH TRANSLATES B,C INTO ADDRESS IN H,L iy
i . - - H ONTAIN PICTURE STARTING ADDRESS (MOST S5IG HALF) i
5 D. Relative location is 64 + 11 = 75, e e oy R T aC , i
Add this to H,L. 5120+ 75 =5195 ANI 40H 3GET RID OF ALL BUT 64 BIT
p——— JZ QUADL $IF ZERO (X<64) GO AROUND
. e . INR E JADD 2 TO E ‘
So, the digitizer is pointing at location 5195 INR E]
. - . A,B ‘,
in_memory. All this calculation would be ot % aom iSUB 64 FROM B]
done in 8080 machine code, resulting in the MOV B,A ¥
. QUADL: MOV A,C 3GET Y COORD
hexadecimal address value of 144B. ANT 40N $GET RID OF ALL BUT BIT 64
The 8080 subroutine TRANS (see listing 4z QUADY 3IF ZERO (Y<64) GO AROUND
1 addresses 0067 to 009A) translates the XY
coordinates stored in the B and C register Continued on page 138
29

Continued from page 29

QUADY

LOVER:

MOV A,E

ADI 04H $ INCREMENT THIRD BIT OF E
MOV E,A

MOV A,C 3SUB 64 FROM C

SB1 40H

MOV C,A

MOV A,B SGET X AGAIN

RRC 3DIVIDE BY 2

RAR ;DIVIDE BY 2 AGAIN

MOV B,A 3STORE IN B

MV A,l 3 CLEAR A

ADC A sPUT CARRY IN A

MOV D,A $STORE CARRY IN D

MOV A,B $GET X/4 AGAIN

AN1 OFH $LOOSE HIGHER HALF-WORD
MoV B,A 3SAVE IN B

MOV A,C 3GET Y AGAIN

RLC iMULTIPLY BY 8

RLC

RAL

JNC LOVER 3 1IF NO CARRY, DONT INCREMENT E
INR E

AN1 O0FOH 3DUMP LOWER HALF-WORD
ADD B 3ADD X DISPLACEMENT

MOV L,A 3LOAD L

MOV H,E jLOAD H

RET

Selecting the Color of the Crayon

We decided to let the user select the
desired color and intensity by moving the -
switches for the lower four bits of the
“programmed input” register on the IMSAI
8080 front panel. (If the switches are all off,
zeros will be written into memory, which
gives the “black” color.) We must also know
into which half of Dazzler byte location we
should put this color information. This is
determined by the state of the carry bit
which was saved in register D, when X was
divided by 4 in the algorithm for address
calculation. For example, X = 40 and X = 42
will translate into the same address. But
X =42 will set the carry bit, causing the
most significant half of the word to be used,
while X =40 won’t, causing the least signifi-
cant haif to be used. A program sequence to
accomplish this would be:

1. Read switch registers.

2. Mask out the most significant half
word.

3. Store in C.
If D =0, get word in location refer-
enced by H,L. Then zero least signifi-
cant half and “OR” the result with C.

4. If D =1, rotate C 4 times, get word
referenced by H,L. Then zero most
significant half, and “OR" the result
with C.

5. Move result back to memory.

The above manipulations are taken care
of in the main program which we show
assembled in listing 1 along with all the
subroutines needed.

The Final Program

The final Cybernetic Crayon program
consists of a “main program” (which is
actually not very long), and three sub-

138

ment followed by a call

routines. The main program handles a few
minor tasks (like turning the Dazzler on, and
selecting a color), and also calls the sub-
routines as needed.

For example, in order to get X and Y
from the digitizer, it must “read” each value
separately from the appropriate input ports
(in our program X is read from port 10, and
Y from 11). These values must be decoded,
and ‘stored in two of the registers of the
microcomputer. Thus, once the digitizer is

-connected to the two parallel ports as

described, all that is needed to read and
decode each coordinate is an input state-
to the “DE-
CODING” routine. We can accomplish this
task as follows:

-

1. Input from X port to accumulator and
complement.

2. Call decode routine.

3. Move result to B register.

4. Input from Y port to accumulator and
complement,

5. Call decode routine.

6. Move result to C register.

This segment is found at addresses 0019
to 0027, with the H register used as a
temporary copy of the X value. All our
programs were written in 8080 assembly
language. For those readers who don’t have
an assembler, a machine language translation
is also shown. This was produced by a
cross-assembler written in BASIC-PLUS by
Don Simon of Soloworks.

Some ldeas for Extending and Applying
the Cybernetic Crayon

Extensions that we are working on in-
clude a blinking cursor, superimposing
pictures from two digitizers, subpictures,
moving pictures, and games that allow
human interaction. Some of these may
exceed the capabilities of a single processor,
which suggests that several processors with
shared memory is an idea worth exploring.

The principal application we have in mind
is to education, but not in the sense of what
is called “CAI” (computer assisted instruc-
tion). CAl says that computers should be
used to ‘‘teach” children. We think that
anyone who has used computers knows that
it should be the other way around. One of
the best ways to learn something is for the
student to try to “teach” it to a critical
audience. What more critical (but fair) audi-
ence can you find than a computer?

Another deep idea about human learning
that comes out of letting people play with

computers (as opposed to using computers
as Skinnerian teaching machines) is that real
computing helps build a rich background of
experiences. This is educationally valuable
because people with lots of experiences are
much better audiences for lectures and
books. For example, a young child who has
played with the Cybernetic Crayon will
surely get a lot more out of a math book
that explains Cartesian coordinate systems
than one who reads the same book cold.
Computers are revolutionary for educa-
tion, not because they can ‘‘automate”
teaching, but because they make it possible
to undo a serious mistake. Present educa-

tional practice is basically upside down. It
says to young children “listen to, and
memorize all this stuff because- some day
you'll do great things with it.”” How much
better it would be if we could let kids do
great things first, and then explain how it all
worked. The followup would be to show
how even better things could be done with
new information. The power of computers is
that they make such a strategy not only
possible, but workable in a way that makes
learning the adventure it ought to be. This is
why the personal computing movement has
much to contribute to the future of
education.m

The use of this system can lead to quite practical results for the artist. What called the Crayon System to our attention and
resulted in this article was Margot Critchfield’s first entry into the BYTE Computer Art Contest, the pastoral scene, photo 7.
Here are several of the Art Contest entries which Margot Critchfield has created using the Cybernetic Crayon system described

by this article. The comments are based on Margot’s notes with direct quotes as indicated. ;

Using Computer Graphics as a Medium
for Artistic Expression:
A Portfolio of Explorations

By

Margot Critchfield
Project Solo

311 Alumni Hall
University of Pittsburgh
Pittsburgh PA 15260

Photo 1: Fruit Salad. The background of
warm colors in vertical stripes was created
first. Then the shapes were created in Erase
mode, after which the stripes were modified
to echo the shapes.

Photo 2: Framework. The background of all possible colors was done first in
horizontal stripes. Then the framework and ‘joints” were done in Erase
mode.

139

L

Photo 3: Modern Stained Glass. The framework of photo 2, modified by

further erasures.

Photo 5: Windows and
Spaces. This picture is re-
stricted to horizontal and
vertical contours. It
achieves a dreamlike qual-
ity, with an illusion of
overlapping forms.

140

Photo 4: Psychedelic Cat.
This picture is an attempt
to photograph a frame at-
tached to the front of the
television set. Margot
writes “This is an attempt
to work in a more tradi-
tional or painterly way
with the digitzer, It in-
volves a good deal of pa-
tience and much switching
back and forth between
colors. By this time | had
more or less memorized
the switches,”

Photo 6: Patriotic Motif.
“A predrawn map of the
US was traced with the
digitizer on a blue back-
ground then filled in. Ini-
tials were done in Erase
mode.”’

Photo 7: Pastoral Scene or

Ferocious Rabbit Attack-
ing Two Horses at a Pond
While the Sun Sinks Slow-
ly Behind the Hills. The
background of this image
was drawn first, then the
animals were added. There
is a childlike quality (na-
turally) since a visiting 5
year old drew the horse.

Photo 8: Lily Pond. “With apologies to Monet. The attempt here is to approximate soft contours, impressionist type color
mixtures. Looks good through an out of focus projector lens.”

	covers.PDF
	page 1
	page 2
	page 3
	page 4

