ATAIR 660
SECHION

0

| EN——
L—3

 OPERATOR'S &l

I

=

[l

2-1. GENERAL

The Operators Guide contains information on the ALTAIR 8800b
computer (8800b) front panel controls and indicators. It includes
general switch operation exercises and a sample program which is
intended to familiarize the operator with the various front panel
operations. Provided in this section are portions of the Intel 8080
Microcomputer Systems Users Manual which contain Central Processor
Unit, Interface and Software information. Additional programs available
to the user are described in the ALTAIR Software Library. Update infor-
mation is contained with your unit.

2-2. FRONT PANEL SWITCHES AND INDICATORS

The Front Panel switches permit the operator to perform various
ALTAIR 8800b operations, and the indicators display address informa-
tion, data information, and primary status control line information.
Refer to Figure 2-1 for the location of the switches and indicators
and Table 2-1 for an explanation of each.

Figure 2-1. Altair 8800b Front Panel

2-1

Tab]e 2-1. ALTAIR 8800b Switches and Indicators

Switch

Function or Indication

POWER ON/OFF

STOP/RUN

SINGLE STEP/
SLOW

EXAMINE/
EX NEXT

Applies power to the ALTAIR 8800b

The RUN position allows the CPU to process
data and disables all functions on the
front panel except reset. The STOP pos-
ition conditions the CPU to a wait state
and enables all functions on the front
panel.

The SINGLE STEP position allows execu-
tion of one machine cycle or one instruc-
tion cycle (depending upon the option
selected). SLOW position allows execu-
tion of machine or instruction cycles

at a rate of approximately 2 cycles per
second. (Normal speed is approximately
500,000 machine cycles per second.)

The CPU will execute the cycles as long
as the SLOW position is maintained.

The EXAMINE position allows the operator
to examine the memory address selected
on the A0-A15 MEMORY switches. The
contents at that address are displayed
on the DATA DO-D7 indicators. The EX
NEXT position allows the operator to
examine the next sequential memory
address. Each time EX NEXT is actuated,
the contents of the next sequential
memory address are displayed.

./

Table 2-1. ALTAIR 8800b Switches and Indicators - Continued

Switch

Function or Indication

DEPOSIT/
DEP NEXT

RESET/
EXT CLR

PROTECT/
UNPROTECT*

ACCUMULATOR
DISPLAY/LOAD

circuit.

The DEPOSIT position stores the contents
of the lower address switches (A0-A7)
into the memory address that is displayed
on the MEMORY address AO-A15 indicators.
The DEP NEXT position stores the contents

of the lower address switches (A0-A7) into

the next successive memory address.

The RESET position resets the program
counter to zero and the interrupt enable
flag in the CPU. The EXT CLR position
produces an external clear signal on the
system bus which generally clears an
input/output.

The PROTECT position conditions the
write protect circuits on the currently
addressed memory board, preventing data
in that block of memory from being
changed. The front panel or the CPU
cannot affect the memory when protected.
UNPROTECT position aliows the contents
of memory to be changed.

The DISPLAY position allows the contents
of the CPU accumulator register to be
displayed on the DATA D0-D7 indicators.
The LCAD position allows the lower

eight address switch (A0-A7) information
to be stored in the CPU accumulator
register.

*Protect switch only applies to memory boards with a orotect

Aoril, 1977
880Gh

N

Table 2-1. ALTAIR 8800b Switches and Indicators - Continued

Switch or Indicator

Function or Indication

INPUT/
QUTPUT

Address Switches
A0-A15

SENSE switches
A8-A15

MEMORY AQ-A15
PROTECT

INTE

MEMR

INP

M

ouT

The INPUT position allows an external
device, selected on the I/0 A0-A7 switches
(upper eight address switches), to input
data into the CPU accumulator. The
QUTPUT position allows an external de-
vice, selected on the I/0 A0-A7 switches,
to receive data from the CPU accumulator
register.

These switches are used to select an
address in memory or to enter data. The
up position denotes a one bit and the
down position denotes a zero bit.

- The upper eight address switches (A8-

A15) also function as SENSE switches.
The data present on these switches is
stored in the accumulator if an input
from channel 3778 (front pane])'is exe-
cuted.

Display the memory address being examined
or loaded with data.

Memory is protected.

Interrupts are enabled.

The CPU is reading data from memory .
An external device is inputting data
to the CPU.

The CPU is in machine cycle one of an
instruction cycle.

The CPU is outputting data to an
external device.

2-4

Aprit, 1977
£800b

Table 2-1. ALTAIR 8800b Switches and Indicators - Continued

Indicator Function or Indication
HLTA The CPU is in a halt condition.
STACK The address bus contains the address
of the stack pointer.
W0 The CPU is writing out data to an
external device or memory.
INT The CPU has acknowledged an interrupt
request.
DATA DO-D7 Data from memory, an external device,
or the CPU
WAIT The CPU is in a wait condition.
HLDA The CPU has acknowledged a hold
signal.
Aoril, 1977

§8CCh

no

!
(93]

ro

[}
(o)

2-3. FRONT PANEL SWITCH APPLICATIONS

The following switch applications are intended to familiarize
the operator with the ALTAIR 8800b front panel switches and indica-
tors. Perform the operations in a sequential manner as shown in the

following tables.

2-4. POWER ON SEQUENCE (Table 2-2)

The power on sequence resets the CPU program counter to the first
memory address and places the CPU in a wait condition at the beginning

of an instruction cycle.

OFF switch to ON.

Table 2-2. Power On Sequence
Step Function Indication
1 Position the POWER ON/ MEMR, M1, and WAIT indica-

tors are on. Some DATA
DO-D7 indicators may also

be on. All other indicators

are off.

2-5. RUN OPERATION (Table 2-3)

The run operation releases the CPU from a wait condition, and

allows it to execute a program.

When the run operation is enabled,
all other front panei switches are inactive except the RESET switch.

Table 2-3. Run Operation

Function

Indication

Momentarily position the
STOP/RUN switch to RUN.

WAIT indicator is off
(or may be dimly iit).
The machine can now exe-
cute a program.

April,
880CH

—
[Te]
~4

7

2-6. STOP OPERATION (Table 2-4)

The stop operation places the CPU in a wait condition and allows
the operator to use the switches on the 8800b front panel.

Table 2-4.

Stop Operation

Step

Function

Indication

1

Position the STOP/RUN
switch to STOP.

WAIT, MEMR, and M1 indicators
are on. The operator now

has control of the front
panel.

2-7. EXAMINE MEMORY OPERATION (Table 2-5)

This procedure allows the operator to select a memory address
and examine its contents.

Table 2-5. Examine Memory Operation
Step i Function Indication ;
1 Position the address ‘
switches AQ-Al15 i
! down. é
2 Position the EXAMINE/ AQ through A15 indicators are j
EX NEXT switch to off, indicating memory address ;
EXAMINE. location 0008 is being examined. g
DATA DO through D7 indicators '
are displaying the contents
of location 0008.
3 Position address
switches Al and A2
up.
4 Position the EXAMINE/ Al and A2 indicators are on,
EX NEXT switch to indicating memory address 0068
EXAMINE. is being examined. DATA DO
through D7 indicators are dis-
playing the contents of loca-
tion 0068;

Aoril, 1977
38CCb

ro
]
~

2-8

2-8. ALTERING MEMORY CONTENTS (Table 2-6)

This procedure allows the operator to select a memory address
and change its contents.

Table 2-6. Altering Memory Contents

Step Function Indication
1 Position address switch
A5 up and the remaining
switches down.
2 Position the EXAMINE/ A5 indicator is on, indi-
EX NEXT switch to EXAMINE | cating memory address 0408.
DATA DO through D7 indi-
cators are displaying the
contents of location 0408.
3 Position the AO through
A7 address switches up.
4 Position the DEPQSIT/DEP |DATA DO through D7 indi-
NEXT to DEPOSIT cators are on, indicating
the new data that has been
placed in address location "
0408.

2-9. EXAMINE NEXT MEMORY LOCATION (Table

2-7)

This procedure allows the operator to examine the next sequential
memory location, as determined by the address switches.

Table 2-7. Examine Next Memory Location

Step Function Indication
1 Position address switches
A0 and A5 up, and the re- |
maining switches down. (
2 Position the EXAMINE/EX A0 and A5 indicators are

NEXT switch to EXAMINE

on, indicating memory
address 0418.

——

April, 1977
88005

Table 2-7. Examine Next Memory Location - Continued

Step Function Indication
3 Position address

switches Al, A4, and

A6 up, and the remain-

ing switches down.

4 Position the DEPOSIT/ DATA D1, D4, and D6 in-
DEP NEXT switch to dicators are on.
DEPQSIT

5 Position address switch

A5 up, and the remaining
switches down.

6 Position the EXAMINE/EX AS indicator is on, in-
NEXT switch to EXAMINE dicating memory address
0408. DATA DO through
07 indicators are on.

7 Position the EXAMINE/EX A5 and AQ indicators are
NEXT switch to EX NEXT on, indicating address
0418. DATA D1, D4, and
Dé indicators are on.

2-10. ALTER NEXT MEMORY LOCATION CONTENTS (Table 2-8)
This procedure allows the operator to select a memory address
and change the contents of the address that immediately follows.

Table 2-8. Altering Next Memory Contents
Step Function Indication
1 Position address switches
A0 and A5 up, and the re-
maining switches down.

2 Position the EXAMINE/EX AQ and A5 indicators
NEXT switch to EXAMINE are on.

3 Position address switches
AO through A7 up ‘

April, 1977 ' 2-9
3800b

Table

2-8. Altering Next Memory

Contents - Continued

Steb

Function

Indication

Position the DEPOSIT/
DEP NEXT switch to DEP
NEXT

To verify, positicn ad-
dress switches A5 and Al
up, and the remaining
switches down.

Position the EXAMINE/

EX NEXT switch to EXAMINE

Al and A5 indicators are
on, indicating 0428.
DATA DO through D7 are
on, displaying the new

contents of location 0428.

A1 and A5 indicators are
on, and DATA DO through
D7 are on.

2-11.

LOADING AND DISPLAYING ACCUMULATOR

DATA (Table 2-9)

This procedure allows the operator %o load new data into the
accumulator or check the contents of the accumulator.

Table 2-9.

Loading and Displaying Accumulator Data

Step

Function

Indication

1

Position address switches
A0, Al, and A2 up, and the
remaining switches down.
Position the ACCUMULATOR

DISPLAY/LOAD switch to LOAD

Position the ACCUMULATOR
DISPLAY/LOAD switch to
DISPLAY

DATA DO, D1, and D2
indicators are on
while "DISPLAY" is
activated.

Aoril, 1877
88C0b

2-12. LOADING A SAMPLE PROGRAM

The sample program is designed to retrieve two numbers from memory,
add them together, and store the result in memory. The exact program
in mnemonic form can be written as follows:

0. LDA

1. MOV B,A
2. LDA

3. ADD B
4. STA

5. JMP

The mnemonics for all 78 8800b instructions are explained in detail in
the excerpt from the Intsel 8080 Microcomputer System User's Manual con-
tained in this section. However, the instructions used in this program
are explained as follows:

0. LDA--lLoad the accumulator with the contents of a specified
memory address.
MOV B,A--Move the contents of the accumulator into register B.
LDA--Same as 0.
ADD B--Add the contents of register B to the contents of the
accumulator and store the result in the accumuiator.

4. STA--Store the contents of the accumulator in a specified

memory address.

5. JMP--Jump to the first step in the program.
Step 5, the JMP instruction (followed by the memory address of the first
instruction), causes the CPU to "jump" back to the beginning of the sample
program and execute the program repeatedly until the CPU is haited. With-
out a JMP instruction the CPU would continue to run randomly through memory.

2-13. _LOADING THE PRCGRAM

To load the program into the 8800b, first determine the memory
addresses for the two numbers to be added and where the result is to be
stored. Store the program instructions in successive memory addresses,
beginning at the first memory address, 0008. In this example the first
number to be added will be located at memory address 2004 (10 000 000),
the second at memory address 2018 (10 000 001), and the sum will be
stored in memory address 2028 (10 000 010). Now that the memory addresses

have been specified, the program can be ccnverted into its machine bit

patterns (Table 2-10).

April, 1977
88G60b

[€5 T o B
e o e

Table 2-10. Machine Language Bit Patterns

MNEMONIC BIT PATTERN EXPLANATION
LDA 200 00 111 010 Load Accumulator in the CPU with con-
10 000 000 tents of Memory address 2008 (2 bytes
00 000 000 required for memory addresses)
MOV B,A 01 000 111 Move Accumulator data to Register B
LDA 201 00 111 010 Load Accumulator with the contents
10 000 001 of Memory address 2018
00 000 000
ADD B 10 000 000 Add Register B to Accumulator
STA 202 00 110 010 Store the Accumulator contents
10 000 010 in Memory address 2028
00 000 000
JMP 000 11 000 011 Jump to Memory location Q.
00 000 000
00 000 000

2-12

The octal equivalent of each bit pattern is also frequently

included in the program listing. It is easy to load octal numbers
on the front panel switches, since it is only necessary to know

the binary equivalents for the numbers 0-7. The resulting program,
including octal equivalents, may be written as shown in Table 2-11:

April, 1977
£300b

Table 2-11.

Addition Program

MEMORY MNEMONIC BIT PATTERN OCTAL EQUIVALENT

ADDRESS
000 LDA 200 00 111 010 072
001 (address) 10 000 000 200
002 (address) | 00 000 000 000
003 MOV B,A 01 000 111 107
004 LDA 201 00 117 010 072
005 (address) 10 000 001 201
006 (address) | 00 000 000 000
007 ADD 8 10 000 000 200
010 STA 202 00 011 010 062
011 (address) | 10 000 010 202
012 (address) | 00 000 000 000
013 JMP 000 11 000 01 303
014 (address) | 00 000 000 000
015 (address) | 00 000 000 000

Using the front panel switches, the program may now be entered
into the computer. To begin loading the program at the first memory
address 000, position the RESET/CLR switch to RESET.
stored in address 000 is entered on address switches AQ through A7.
After the address switches are set, pesition the DEPOSIT/DEP NEXT
switch to DEPOSIT to enter the AO-A7 bit pattern into memory address
Enter the second byte of data on the address switches and pos-

000.

ition the DEPOSIT/DEP NEXT switch to DEP NEXT.

April, 1977

28C0b

The bit pattern will
be loaded automatically into the next sequential memory address (001).
Continue Toading the data into memory for the remainder of the pro-
gram. The complete program lodding procedure is shown in Table 2-12:

The data to be -

rn
]

—

(@5

2-1:

Table 2-12. Addition Program Loading

MEMORY ADDRESS CONTROL SWITCH
ADDRESS SWITCHES

DATA 0-7

RESET

000 00 111 010 | DEPOSIT
001 10 000 000 | DEPOSIT NEXT |
002 00 000 000 ‘ DEPOSIT NEXT |
003 01 000 111 | DEPOSIT NEXT | §
004 00 111 010 ' DEPOSIT NEXT a
005 10 000 001 ; DEPOSIT NEXT E
006 00 000 000 | DEPOSIT NEXT :
007 10 000 000 | DEPOSIT NEXT 2
010 00 110 070 | DEPOSIT NEXT ’
011 10 000 010 | DEPOSIT NEXT
012 00 000 000 | DEPOSIT NEXT
013 11 000 011 | DEPOSIT NEXT
014 00 000 000 | DEPOSIT NEXT
015 00 000 000 | DEPOSIT NEXT

April, 1977
8200b

The program is now ready to be run, but first it is necessary tc
store data at each of the two memory addresses (2008 and 2018) to be
added together. To load the first address, set address switches AQ-

A7 to 10 000 0002 and position the EXAMINE/EX NEXT switch to EXAMINE.
Now load any desired number into this address by using address switches
AO-A7. When the number has been loaded onto the switches, position the
DEPOSIT/DEP NEXT to DEPOSIT to load the data into memory. To load the
next address, enter a second number on the address switches AQ-A7 and
position the DEPOSIT/DEP NEXT switch to DEP NEXT. Since sequential
memory addresses were selected, the number will be loaded automatically
into the proper address (10 000 0012). Once the program has been loaded
and the two numbers rave been stored in memory locations 2008 and 2018,
the program can be run. Return to address 000 by positioning all AO-A7
address switches down and positioning the EXAMINE/EX NEXT switch to
EXAMINE. Then position the STOP/RUN switch to RUN. Wait a moment and
position the STOP/RUN switch to STOP. Check the answer of your addi-
tion program by selecting memory location 2028 on the address switches
and positioning the EXAMINE/EX NEXT switch to EXAMINE. The result is
displayed on the DATA D0-D7 indicators.

[

2-14. INTEL 8080 MICROCOMPUTER SYSTEMS USER'S INFORMATION

Pages 2-16 through 2-65 are excerpts from the Intel 8080 Micro-
computer Systems User's Manual, reprinted by permission of Intel
Corporation, Copyright 1975. Included is detailed Central Processor
Unit, Interface and Software information pertaining to the 8080
Microcomputer System.

April, 1977 2-1%
88009

This chapter introduces certain basic computer con-
cepts. It provides background information and definitions
which will be useful in later chapters of this manual. Those
already familiar with computers may skip this material, at
their aption.

A TYPICAL CCMPUTER SYSTEM
A typical digital computer consists of:

a} A cantral processor unit (CPU)
b) A memary
¢} Input/output {{/Q) ports

The memory serves as a piace to store Instructions,
the coded piecas of information that direct the activities of
the CPU, and Data, the cocded pieces of information that are
procassed by the CPU. A group of logically related instruc-
tions stored in memory is referred to as a Program. The CPU
“‘reads’’ each instruction from memory in a iogicaily deter-
mined sequence, and uses it TO initiate processing actions.
If the program sequence is coherent and logical, processing
the prégram will produce inteiligible and useful resuits.

The memory is also used to store the data (0 be manip-
ulated, as well as the instructions that direct that manipu-
lation. The program must be organized such that the CPU
does not read 3 non-instruction word when it expects to
see an instruction. The CPU can rapidly access any data
stored in memaory; but often the memory is not large enough
to store the entire data bank required for a partiqular appii-
cation. The probiem can be resolved by providing the com-
puter with one or more {nput Ports. The CPU can address
these ports and input the data contained there. The addition
of input ports enabies the computer to receive information
from externai equiﬁment {such as a paper tape reader or
floppy disk) at high rates of speed and in large volumes,

A computer also requires cne or more Output Ports
that permit the CPU to communicate the result of its pro-
cessing to the outside world. The output may go to a dis-
play, for use by a human operator, to a peripheral device
that produces “‘hard-copy,” such as a line-printer, to a

2-16

peripheral storage device, such as a floppy disk unit, or the
output may constitute process controi signals that direct the
operations of another system, such as an automated assembly
line, Like input ports, cutput ports are addressabie. The
input and output ports together permit the processor to
ccmmunicate with the outside worid.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU must be able
to fetch instructicns from memory, decode their binary
contents and execute them. It muss aiso be able to reference
memory and 1/Q ports as necessary in the execution of in-
structions. |n addition, the CPU should be able to recognize
and respond to certzin external control signals, such as
INTERRUPT and WAIT reguests. The functional units
within a2 CPU that enable it to perform these functions are
described below.

THE ARCHITECTURE OF A CPU

A typicai central procassor unit (CPU) consists of the
foilowing intarconnected functional units:

e Registers
o Arithmetic/Lcgic Unit (ALU)
o Controi Circuitry

Registers are tempaorary storage units within the CPU.
Some registers, such as the program counter and instruction
register, have dedicated uses. Other registers, such as the ac-
cumulator, are for more general purpose use.

Accumulator:

The accumulator usually stores one of the operands
to be manipulated by the ALU. A typical instruction might
direct the ALU to add the contents of some other register to
the contents of the accumuiator and store the resuit in the
accumuiator itself. In general, the accumulator is both a
source (operand) and a destination (result) ragister,

Often a CPU will include a number of additional
general purpose registers that can be used tc store operands
or intermadiate data. The availability of general purpose

Aoril, 1677

2scat

registers eliminates the need to “shuffle” intermediate re-
sults back and forth between memory and the accumulator,
thus i.mproving processing speed and efficiency.

Program Counter (Jumps, Subroutines
and the Stack):

The instructions that make up a program are stored
in the system’s memory. The cantral processor references
the contents of memory, in order to determine what action
is appropriate., This means that the processor must know
which location contains the next instruction.

Each of the locations in memory is numbered, to dis-
tinguish it from all other locations in memory. The number
which identifies a memory location is called its Address.

The processor maintains a counter which contains the
address of the next program instruction. This register is
called the Program Counter. The processor updates the pro-
gram counter by adding “1” to the counter each time it
fetchesan instruction, so that the program counter is aiways
current (pointing to the next instruction).

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
. contain the first instructions to be executed and the higher
addressas contain later instructions. The only time the pro-
grammer may violate this sequential rule is when an instruc-
tion in one section of memory is a Jump instruction to
another section of memory.

A jump instruction contains the address of the instruc-
tion which is to follow it. The next instruction may be
stored in any memory location, as long as the programmed
jump specifies the correct address. During the execution of
ajump instruction, the processor repiaces the contents of its
program counter with the address embodied in the Jump.
Thus, the logical continuity of the program is maintained.

A special kind of program jump occurs when the stored
program “Calls” a subroutine. in this kind of jump, the pro-
cessor is required to ‘remember’’ the contents of the pro-
gram counter at the time that the jump occurs. This enabies
the processor to resume execution of the main program
when itis finished with the last instruction of the subroutine.

A Subroutine is a program within a program. Usually
it is a general-purpose set of instructions that must be exe-
cuted repeatedly in the course of a main program. Routines
which calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often
written as subroutines. Other examples might be programs
designed for inputting or outputting data to a particular
peripheral device.

The processor has a special way of handling sub-
routines, in order to insure an orderly return to the main
program. When the processor receives a Call instruction, it
increments the Program Counter and stores the counter’s
contents in a reserved memory area known as the Stack.
The Stack thus saves the address of the instruction to be
executed after the subroutine is completed. Then the pro-

April, 1677
2800b

cessor loads the address specified in the Call into its Pro-
gram Counter. The next instruction fetched will therefore
be the first step of the subroutine.

The last instruction in any subroutine isa Return. Such
an instruction need specify no address. When the processor
fetches a Return instruction, it simply replaces the current
contents of the Program Counter with the address on the
top of the stack. This causes the processor to resume execu-
tion of the calling program at the point immediately follow-
ing the original Call Instruction.

Subroutines are often Nested; that is, one subroutine
will sometimes cail a second subroutine., The second may
call a third, and so on. This is perfectly acceptable, as long
as the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itseif. If the stack has space for
storing three return addresses, then three levels of subrou-
tines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage cf return addresses built
into the processor itself. Other processors use a reserved
area of external memory as the stack and simply maintain a
Pointer register which contains the address of the most
recent stack entry. The external stack allows virtually un-
limited subroutine nesting. In addition, if the processor pro-
vides instructions that cause the contents of the accumulator
and other generai purpose registers to be ‘‘pushed’’ onto the
stack or '‘popped’’ off the stack via the address stored in the
stack pointer, multi-level interrupt processing {(described
later in this chapter) is possibie, The status of the processor
{i.e., the contents of ail the registers) can be saved in the
stack when an interrupt is accepted and then restored after
the interrupt has been serviced. This ability to save the pro-
cessor’s status at any given time is possibie even if an inter-
rupt service routine, itself, is interrupted.

Instruction Register and Decoder:

Every computer has a Word Length that is characteris-
tic of that machine. A computer’'s word length is usually
determined by the size of its internal storage elements and
interconnecting paths (referred to as Busses); for example,
a computer whose registers and busses can store and trans-
fer 8 bits of information has a characteristic word length of
8 bits and is referred to as an 8-bit parailel processor. An
gight-bit parallel processor generally finds it most efficient
to deal with eight-bit binary fields, and the memory asso-
ciated with such a processor is therefore organized to store
eight bits in each addressable memory location. Data and

- instructions are stored in memory as eight-bit binary num-

bers, or as numbers that are integral muitiples of eight bits:
16 bits, 24 bits, and so on. This characteristic eight-bit field
is often referred to as a Byte.

Each operation that the processor can perform is
identified by a unique bvte of data known as an Instruction

2-17

Code or Operation Code, An eight-bit word used as an in-
struction code can distinguish between 256 aiternative
actions, more than adequate for most processors.

The processor fetches an instruction in two distinct
operations, First, the processor transmits the address in its
Program Counter to the memory. Then the memory returns
the addressed byte to the processor. The CPU stores this
instruction byte in a register known as the Instruction
Register, and uses it to direct activities during the remainder
of the instruction execution.

The mechanism by which the processor transiates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, should be intuitively clear to any logic designer.
The eight bits stored in the instruction register can be de-
coded and used to selectively activate one of a number of
ocutput lines, in this case up to 256 lines. Each line repre-
sents a set of activities associated with execution of a par-
ticular instruction code. The enabied line can be combined
with selected timing puises, to develop electrical signals that
can then be used to initiate specific actions. This transia-
tion of code into action is performed by the Instruction
Decoder and by the associated control circuitry.

An eight-bit instruction code is often sufficient to
specify a particular processing action. There are times, how-
ever, when execution of the instruction requires more infor-
mation than eight bits can convey.

One example of this is when the instruction refer-
ences a memory location. The basic instruction code iden-
tifies the operation to be performed, but cannot specify
the object address as weil. In a case like this, a two- or three-
byte instruction must be used. Successive instruction bytes
are stored in sequentially adjacent memory locations, and
the processor performs two or three fetches in succession to
obtain the full instruction. The first byte retrieved from
memory is placed in the processor’s instruction register, and
subsequent bytes are placed in temporary storage; the pro-
cessor then proceeds with the execution phase. Such an
instruction is referred to as Variable Length.

Address Register(s):

A CPU may use a register or register-pair to holid the
address of a memory location that is to be accessed for
data. If the address register is Programmable, (i.e., if there
are instructions that allow the programmer to aiter the
contents of the register) the program can “‘build” an ad-
dress in the address register prior to executing a Memory
Reference instruction (i.e., an instruction that reads data
from memory, writes data to memory or operates on data
stored in memory).

Arithmetic/Logic Unit (ALU):

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU, The ALU, as its
name implies, is that portion of the CPU hardware which

2-18

performs the arithmetic and logical operations on the binary
data.

The ALU must contain an Adder which is capable of
combining the contents of two registers in accordance with
the logic of binary arithmetic. This provision permits the
processor to perform arithmetic manipuiations on the data
it obtains from memory and from its other inputs.

Using only the basic adder a capable programmer can
write routines which will subtract, multiply and divide, giv-
ing the machine complete arithmetic capabilities. in practice,
however, most ALUs provide other built-in functions, in-
cluding hardware subtraction, boolean logic operations, and
shift capabilities.

The ALU contains Flag Bits which specify certain
conditions that arise in the course of arithmetic and logicai
manipulations. Flags typically include Carry, Zero, Sign, and
Parity. It is possible to program jumps which are condi-
tionally dependent on the status of one or more flags. Thus,
for example, the program may be designed to jump to a
special routine if the carry bit is set following an addition
instruction,

Control Circuitry:

The control circuitry is the primary functional unit
within a CPU. Using clock inputs, the controi circuitry
maintains the proper sequence of events required for any
processing task. After an instruction is fetched and decoded,
the control circuitry issues the appropriate signais (to units
both internal and external to the CPU) for initiating the
proper processing action. Qften the control circuitry will be

capabte of responding to external signals, such as an inter- -

rupt or wait request. An Interrupt request will cause the
control circuitry to temporarily interrupt main program
execution, jump to a special routine to service the interrupt-
ing device, then automatically return to the main program.
A Wait request is often issued by a memory or 1/0 element
that operates slower than the CPU. The control circuitry
will idle the CPU until the memory or {/O port is ready with
the data.

COMPUTER OPERATIONS

There are certain operations that are basic to almost
any computer. A sound understanding of these basic opera-
tions is a necessary prerequisite to examining the specific
operations of a particular computer.

Timing:

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, and so on. This

orderly sequence of events requires precise timing, and the
CPU therefore requires a free running oscillator clock which

furnishes the reference for all processor actions. The com-

bined fetch and execution of a single instruction is referred
to as an Instruction Cycle. The portion of a cycie identified

April, 1977
880Chb

with a cleariy defined activity is called a State. And the inter-
val between pulses of the timing oscillator is referred to as a
Clock Period. As a general rule, one or more clock periods
are necessary for the completion of a state, and there are
several states in a cycle,

Instruction Fetch:

The first state(s) of any instruction cycle will be
dedicated to fetching the next instruction, The CPU issues a
read signal and the contents of the program counter are sant
to memory, which responds by returning the next instruc-
tion word. The first byte of the instruction is placed in the
instruction register. If the instruction consists of more than
one byte, additional states are required to fetch each byte
of the instruction. When the entire instruction is present in
the CPU, the program counter is incremented (in prepara-
tion for the next instruction fetch) and the instruction is
decoded. The operation specified in the instruction will be
executed in the remaining states of the instruction cycle.
The instruction may call for a memory read or write, an
input or ocutput and/or an internal CPU operation, such as
a register-to-register transfer or an add-registers operation.

Memory Read:

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU’s instruc-
tion register. The instruction fetched may then call for data
1o be read from memory into the CPU. The CPU again issues
aread signal and sends the proper memory address; memory
responds by returning the requested word. The data re-
ceived is placed in the accumulator or one of the other gen-
eral purpose registers (not the instruction register).

Memory Write:

A memory write operation is similar to a read except
for the direction of data flow. The CPU issues a write
signal, sends the proper memory address, then sends the data
word to be written into the addressed memory location.

Wait (memory synchronization):

As previously stated, the activities of the processor
are timed by a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory’s Access Time. Once the processor has sent a
read address to memory, it cannot proceed until the memory
has had time to respond. Most memories are capable of
responding much faster than the processing cycle requires.
A few, however, cannot supply the addressed byte within
the minimum time established by the processor’s clock.

Therefore a processor should contain a synchroniza-
tion provision, which permits the memory to request a Wait
state, When the memory receives a read or write enable sig-
nal, it places a request signai on the processor’'s READY line,
causing the CPU to idle temporarily. After the memory has

Aoril, 1677
8800b

had time to respond, it frees the processor’'s READY line,
and the instruction cycle proceeds.

Input/Qutput:

input and Qutput operations are similar to memory
read and write operations with the exception that a peri-
pheral 1/0 device is addressed instead of a memary location.
The CPU issues the appropriate input or output control
signai, sends the proper device address and either recaives
the data being input or sends the data to be output.

Data can be input/output in either parallel or serial
form. All data within a digital computer is represented in
binary coded form. A binary data word consists of a group
of bits; each bit is either a one or a zero. Parailel 1/0 con-
sists of transferring all bits in the word at the same time,
one bit per line. Serial /0 consists of transferring one bit
at a time on a single line. Naturally serial 1/0 is much
siower, but it requires considerably less hardware than does
parallel 1/0,

Interrupts:

Interrupt provisions are included on many central
processors, as a means of improving the processor’s effi-
ciency. Consider the case of a computer that is processing a
large volume of data, portions of which are to be output
to a printer, The CPU can output a byte of data within a
single machine cycle but it may take the printer the equiva-
lent of many machine cycles to actuaily print the character
specified by the data byte. The CPU could then remain idle
waiting until the printer can accept the next data byte. if
an interrupt capability is implemented on the computer, the
CPU can output a data byte then return to data processing.
When the printer is ready to accept the next data byte, it
can request an interrupt. When the CPU acknowledges the
interrupt, it suspends main program execution and auto-
matically branches to a routine that will output the next
data byte. After the byte is output, the CPU continues
with main program execution. Note that this is, in principle,
quite similar to a subroutine cail, except that the jump is
initiated externally rather than by the program.

More complex interrupt structures are possible, in
which several interrupting devices share the same processor
but have different priority levels. Interruptive processing is
an important feature that enables maximum untilization of
a processor’s capacity for high system throughput.

Hold:
Another important feature that improves the through-
put of a processor is the Hold. The hold provision enables

Direct Memory Access (DMA) operations.

In ordinary input and output operations, the processor
itself supervises the entire data transfer. information to be
placed in memory is transferred from the input device to the
processor, and then from the processor to the designated
memory location. In similar fashion, information that goes

2-19

from memory to output devices goes by way of the
processor. '

Some peripheral devices, however, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or from
such a device, then system throughput will be increased by

2-20

having the device accomplish the transfer directly, The pro-
cessor must temporarily suspend its operation during such a
transfer, to prevent conflicts that would arise if processor
and peripheral device attempted to access memory simul-
taneously. It is for this reason that a hold provision is in-
cluded on some processors.

Aoril, 1
8800b

w0
~3
~3

