This chapter will illustrate, in detail, how to interface
the 8080 CPU with Memory and /0. It will also show the
benefits and tradeoffs encountered when using a variety of
system architectures to achieve higher throughput, de-
creased component count or minimization of memory size.

8080 Microcomputer system design lends itseif to a
simple, modular approach. Such an approach will yield the
designer a reliable, high performance system that contains a
minimum component count and is easy to manufacture and
maintain.

The overail system can be thought of as a simple
block diagram. The three (3) blocks in the diagram repre-
sent the functions common to any computer system,

CPU Moduie* Contains the Cantral Processing Unit, system
timing and interface circuitry to Memory
and /0 devices.

Memory Contains Read Only Memory (ROM) and
Read/Write Memory (RAM) for program and
data storage.

/O Contains circuitry that ailows the computer

system to communicate with devices or
structures existing outside of the CPU or
Memory array.

for example: Keyboards, Floppy Disks,
Paper Tape, etc.

There are three busses that interconnect these biocks:

Data Bus ' A bi-directional path on which data can flow

between the CPU and Memory or 1/0.

Address Bus A uni-directional group of lines that identify
a particular Memory location or 1/Q device.

*“Module’’ refers to a functional block, it does not ref-
erence a printed circuit board manufactured by INTEL.

T*“Bus™ refers to a set of signals grouped together because
of the similarity of their functions.

April, 1977
88C0b

Control Bus A uni-directional set of signals that indicate
the type of activity in current process.
Type of activities: 1. Memory Read
2. Memory Write
3. I/O Read
4. 1/Q Write
5. Interrupt Acknowledge
ADDRESS 8US] |
U
MEMORY 1:0
cPU
MODULE

<L DATA BUS

CONTROL 3US

Y|
i

Figure 3-1. Typical Computer System Block Diagram

Basic System Operation

1. The CPU Module issues an activity command on the
Controi Bus.

2. The CPU Module issues a binary code on the Address
Bus to identify which particular Memory location or
/O device will be invoived in the current process
activity.

3. The CPU Moduie receives or transmits data with the

selected Memory location or 1/0 device.

4. The CPU Module returns to @ and issues the next
activity command.

It is easy to see at this point that the CPU module is
the central element in any computer system.

2-41

‘The following pages will cover the detailed design of
the CPU Module with the 8080. The three Busses (Data,
Address and Controi) will be developed and the intercon-
nection to Memory and /O wiil be shown,

Design philosophies and system architectures pre-
sented in this manual are consistent with produ% develop-
ment programs underway at INTEL for the MCS-80. Thus,
the designer who uses this manual as a guide for his total
system engineering is assured that all new developments in
components and software for MCS-80 from INTEL will be
compatible with his design approach.

CPU Module Design

The CPU Module contains three major areas:

the design and to achieve operational characteristics that
are as close as possible to those of the 8224 and 8228.
Many auxiliary timing functions and features of the 8224
and 8228 are too complex to practically implement in
standard components, so only the basic functions of the
8224 and 8228 are generated. Since significant benefits in
system timing and component count reduction can be
realized by using the 8224 and 8228, this is the preferred
method of implementation.

1. 8080 CPU

The operation of the 8080 CPU was covered in pre-
vious chapters of this manuai, so little reference will
be made to it in the design of the Module.

The 8080 Central Processing Unit 2. Clock Generator and High Level Driver
A Clock Generator and High Level Driver The 8080 is a dynamic device, meaning that its inter-
g
A bi-directional Data Bus Driver and System Control nal storage elements and logic circuitry require a
Logic timing reference (Clock), supplied by external cir-
. . . . cuitry, to refresh and provide timing control signals.
The following will discuss the design of the three .]
major areas contained in the CPU Module. This design is The 8080 requires two (2) fUCh Clocks. The"’_ wave-
presented as an alternative to the Intel® 8224 Clock Gener- ff)"."s must be non-ov.eltiap;‘:nng, and comply with the
ator and Intel 8228 System Controller. By studying the timing and levels specified in the 8080 A.C. and D.C.
alternative approach, the designer can more cleariy see the Characteristics, page 5-15.
considerations involved in the specification and engineering .
of the 8224 and 8228. Standard TTL components and Intel Clock Generator Design
general purpose peripheral devices are used to implement The Clock Generator consists of a crystal controiled,
2 25 <
GND ——T AQ v A0
*8V —— Al 2 a5
-5V ———uﬁ A2 2 » A2
12V 28" A3 2 A3
30
Ad —lp Al
AS 3; AS
soso A8 T3 > A8
ceuy A7 b= — A7
a8 34 > A8 ADDRESS BUS
SYSTEM DMA REQ -—;3. HOLD A 35 » A9
A10 ! » a10
. arr p2 Al
SYSTEM INT. REQ. ——# INT Atz 122 - A2
A13 *f > A13
(NT. ENABLE 4——r INTE At {22 s Ald
a1s |28 » A1S
ey 18
D ¥TAL DaIN 17
ALoA 2 .
1 L AL
2, . 00 l&2 le——s 080)
1 22 o1 3 > - o81
02 e ¢y DB2
_cLocx —22d wair 03 k- BI-OIREC- [gueemp 083 DATA BUS
marrsc —f seematon (77w) o, e [3) L IO, e ome
oL} o8BS
V5 RESET ——c} 2y} meseT 06 o ‘—,‘_.... 086
21 svne 07 L= s D87
C et INTA)
[T T e CFRAARE | m—— MEM R
STATUS STROBE CSOYS;E'(";L o WEMW | cONTROL 8BUS
et 1:0 R
e d

Figure 3-2. 8080 CPU Interface

2-42

April, 1977
880Cb

OSCILLATOR

|D 20 MHz
330 1= 330
AA,
vy r
74504
__.Do_._; :)D » OSC
74504 SBD pF 74504 v CLOCK GENERATOR
CLK 7486
Vee oA QA 74H00
o8 . » 1 (TTL)
74163
oc Qc
7486
GNQ——E‘DO Qo — 74H00
LR 1D fﬂ)—m > 32 (TTL
l = AUXILIARY FUNCTIONS
Vee SYNC
74HQ0 74H00
5} §7578
74874
WAVEFOAMS
l—qCLK T » 1A (TTL)
o1 __/ ./
—=i 100U ms0ns WAIT REQ 0 afp—> agaov
= 250ms 74574
3008 - I“- — fo—50ns e
Q1A 250ns
SYNC DMA REQ 0 Qp=——p HOLD
P | | V. 74s74
57578 \ / I

Figure 3-3. 8080 Clock Generator

20 MHZ oscillator, a four bit counter, and gating
circuits.

The oscillator provides a 20 MHZ signal to the input
of a four (4) bit, presettable, synchronous, binary
counter. By presetting the counter as shown in figure
3-3 and clocking it with the 20 MHZ signal, a simple
decoding of the counters outputs using standard TTL
gates, provides-proper timing for the two (2) 8080
clock inputs.

Note that the timing must actually be measured at
the output of the High Level Driver to take into ac-
count the added delays and waveform distortions
within such a device.

High Level Driver Design

The voitage level of the clocks for the 8080 is not
TTL compatibie like the other signaic that input to
the 8080. The voitage swing is from .6 volts Y
to 11 volits {Vyyc) with risetimes and falltimes under
50 ns. The Capacitive Drive is 20 pf (max.). Thus, a
High Level Driver is required to interface the outputs
of the Clock Generator {TTL) to the 8080.

The two (2) outputs of the Clock Generator are ca-
pacitivity coupled to a dual- High Level clock driver.
The driver must be capable of complying with the
8080 clock input specifications, page 5-15. A driver
of this type usually has little probiem supplying the

April, 1977
2800b

positive transition when biased from the 8080 Vpp
supply (12V) but to achieve the low voltage specifi-
cation {V)_c) .8 volts Max. the driver is biased to the
8080 Vgg supply (-5V). This allows the driver to
swing from GND to Vpp with the aid of a simple
resistor divider.

A low resistance series network is added between the
driver and the 8080 to eliminate any overshoot of the
pulsed waveforms. Now a circuit is apparent that can
easily comply with the 8080 specifications. In fact
rise and falltimes of this design are typically less than
10 ns,

+12v
Js
680 qu ; 472 o1
1ITTL) — AN
? MHG026 W {8080 PIN 22)
oR
800F,| zauv. |5 478 2
22 (TT0) ——j— V W 2080 1N 1)
3
»
15K 2 sk
. T1N4002 b
68 uf == ' 1000
L VoL
-5V
Figure 3-4. High Level Driver

Auxiliary Timing Signals and Functions

The Clock Generator can also be used to provide
other signals that the designer can use to simplify
large system timing or the interface to dynamic
memaries.

Functions such as power-on reset, synchronization of

Bi-Directional Bus Driver and System Control Logic

The system Memory and /O devices communicate
with the CPU over the bi-directional Data Bus. The
system Control Bus is used to gate data on and off
the Data Bus within the proper timing sequences as
dictated by the operation of the 8080 CPU. The data

lines of the 8080 CPU, Memory and 1/Q devices are
3-state in nature, that is, their output drivers have
the ability to be forced into a high-impedance mode
and are, effectively, removed from the circuit. This 3-
state bus technique allows the designer to construct a
‘system around a single, eight (8) bit parallel, bi-direc-
tional Data Bus and simply gate the information on
or off this bus by selecting or deselecting (3-stating)
Memory and 1/Q devices with signals from the Con-
troi Bus.)

external requests (HOLD, READY, etc.) and single
step, could easily be added to the Clock Generator to
further enhance its capabilities.

For instance, the 20 MHZ signal from the osciilator
can be buffered so that it could provide the basis for
communication baud rate generation.

The Clock Generator diagram also shows how to gen-
erate an advanced timing signal (¢1A) that is handy
to use in clocking “D” type flipflops to synchronize
external requests. It can aiso be used to generate a
strobe (STSTB) that is the latching signal for the sta-
tus information which is available on the Data Bus at The 8080 Data Bus (D7-D0) has two (2) major areas
the beginning of each machine cycle. A simple gating of concern for the designer:

of the SYNC signai from the 8080 and the advanced 1
(¢1A) will do the job. See Figure 3-3.

Bi-Directional Data Bus Driver Design

. Input Voltage level {V,,) 3.3 voits minimum.

2. Qutput Drive Capability {Ig¢) 1.7 mA maximum.

BUSEN
2.4 3
00 = S— = 080
o1 9'.11—- s216 oo D81
02 12'1.41— 13 082
, 14—
03 R & 083
155 §1
24)
o4 = = ~ OB4
3,
os 3 “r—' 8218 10 o8s
08 12'14£— - 086
o7 s e S S o087
OIEN _CS
15 e
DEIN of>—>o S
3 4 INTA
5 5 w0 [—W%
o080 : R
a2 L
16 15 OUT 708
13 17 —-D
20 19 INP
2 21 MEMR .
[p——WiEnR
_ 2 |13
s —1 Vee
- o> T oW

Figure 3-5. 8080 System Control

2-44 Aprit, 1977

88C0b

The input level specification implies that any semi-
conductor memary or |/Q device connected to the
8080 Data Bus must be able to provide a minimum of
3.3 volts in its high state. Most semiconductor mem-
ories and standard TTL 1/O devices have an output
capability of between 2.0 and 2.8 voits, obviously a
direct connection onto the 8080 Data Bus would re-
quire pullup resistors, whose value should not affect
the bus speed or stress the drive capability of the
memory or 1/O components.

The 8080A output drive capability (Ig_) 1.9mA max.
is sufficient for smail systems where Memory size and
1/0 requirements are minimal and the entire system is
contained on a single printed circuit board. Most sys-
tems however, take advantage of the high-perfor-
mance computing power of the 8080 CPU and thus a
more typical system would require some form of buf-
fering on the 8080 Data Bus to support a larger array
of Memory and /0 devices which are likely to be on
separate boards.

A device specificaily designed to do this buffering
function is the INTEL® 8216, a (4) four bit bi- direc-
tional bus driver whose input voltage levei is compat-
ible with standard TTL devices and semiconductor
memory components, and has output drive capability
of 50 mA. At the 8080 side, the 8216 has a “high’’
output of 3.65 volts that not only meets the 8080
input spec but provides the designer with a worse case
350 mV noise margin.

A pair of 8216's are connected directly to the 8080
Data Bus (D7-D0) as shown in figure 3-5. Note that
the DBIN signal from the 8080 is connected to the
direction control input (DIEN) so the correct flow of
data on the bus is maintained. The chip select (C_'S) of

the 8216 is connected to BUS ENABLE (BUSEN) to
allow for DMA activities by deselecting the Data Bus
Buffer and forcing the outputs of the 8216's into
their high impedance (3-state) mode. This aiiows
other devices to gain access to the data bus (DMA).

System Conﬁol Logic Design

The Control Bus maintains discipline of the bi-direc-
tional Data Bus, that is, it determines what type of
device will have access to the bus {Memory or 1/Q)
anc generates signals to assure that these devices
transfer Data with the 8080 CPU within the proper
timing “‘windows’ as dictated by the CPU operational
characteristics.

As described previously, the 8080 issues Status infor-
mation at the beginning of each Machine Cyele on its
Data Bus to indicate what operation will take piace
durmg that cycle. A simple (8) bit latch, tike an
INTEL® 8212, connected directly to the 8080 Data
Bus (D7-D0O) as shown in figure 3-5 will store the

April, 1977
38CCb

Status information. The signal that loads the data
into the Status Latch comes from the Clock Gener-
ator, it is Status Strobe (STSTB) and occurs at the
start of each Machine Cycle.

Note that the Status Latch is connected onto the
8080 Data Bus (D7-D0) before the Bus Buffer. This is
to maintain the integrity of the Data Bus and simplify
Control Bus timing inDMA dependent environments.

As shown in the diagram, a simple gating of the out-
puts of the Status Latch with the DBIN and WR
signals from the 8080 generate the (4) four Control
signals that make up the basic Controi Bus.

These four signals: 1. Memory Read (m)
2. Memory Write (I\EI\;I_V—V)
3.1/0 Read (i70 R)
4.1/0 Write (170 W)

connect directly to the MCS'-MSO component ““famiiy”’
of ROMs, RAMs and 1/0 devices.

A fifth signal, Interrupt Acknowledge (INTA) is
added to the Control Bus by gating data off the
Status Latch with the DBIN signal from the 8080
CPU. This signai is used to enable the Interrupt
instruction Port which holids the RST instruction
onto the Data Bus.

Other signals that are part of the Control Bus such as
WO Stack and M1 are present to aid in the testing of
the System and aiso to simplify interfacing the CPU
to dynamic memories or very large systems that re-
quire several levels of bus buffering.

Address Buffer Design

The Address Bus (A15-A0) of the 8080, like the Data
Bus, is sufficient to support a small system that has a
moderate size Memory and |/0 structure, confined to
a single card. To expand the size of the system that
the Address Bus can support a simple buffer can be
added, as shown in figure 3-6. The INTEL®8212 or
8216 is an excellent device for this function. They
provide low input loading (.25 mA), high output
drive and insert a minimal delay in the System
Timing.

Note that BUS ENABLE (BUSEN) is connected to
the buffers so that they are forced into their high-
impedance (3-state) mode during DMA activities so
that other devices can gain access to the Address Sus.

2-45

INTERFACING THE 8080 CPU TO MEMORY
AND 1/O DEVICES

The 8080 interfaces with standard semiconductor
Memory components and 1/0 devices. In the previous text
the proper control signals and buffering were developed
which will produce a simple bus system similar to the basic
system example shown at the beginning of this chapter.

In Figure 3-6 a simple, but exact 8080 typical system
is shown that can be used as a guide for any 8080 system,
regardless of size or compiexity. It is a “three bus’’ archi-
tecture, using the signals developed in the CPU module.

Note that Memory and 1/Q devices interface in the
same manner and that their isolation is only a function of
the definition of the Read-Write signals on the Control Bus.
This allows the 8080 system to be configured so that Mem-

ory and |/O are treated as a single array (memory mapped

1/0) for small systems that require high thruput and have
less than 32K memory size. This approach will be brought
out later in the chapter. .

ROM INTERFACE

A ROM is a device that stores data in the form of
Program or other information such as “look-up tables’* and
is only read from, thus the term Read Only Memory. This
type of memory is generally non-volatile, meaning that
when the power is removed the information is retained.

This feature eliminates the need for extra equipment like
tape readers and disks to load programs initially, an im-
portant aspect in small system design.

Interfacing standard ROMs, such as the devices shown
in the diagram is simple and direct. The output Data lines
are connected to the hi-directional Data Bus, the Address
inputs tie to the Address bus with possible decoding of the
most significant bits as ““chip selects”” and the MEMR signal
from the Controi Bus connected to a “chip select’” or data
buffer. Basically, the CPU issues an address during the first
portion of an instruction or data fetch (T1 & T2). This
value on the Address Bus selects a specific location within
the ROM, then depending on the ROM’s delay (access time)
the data stored at the addressed location is present at the
Data output lines. At this time (T3) the CPU Data Bus is
in the “input Made” and the control logic issues a Memory
Read command (MEMR) that gates the addressed data on
to the Data Bus.

RAM INTERFACE

A RAM is a device that stores data. This data can be
program, active “look-up tables,’” temporary values or ex-
ternai stacks. The difference between RAM and ROM is
that data can be written into such devices and are in
essence, Read/Write storage elements. RAMs do not hold
their data when power is removed so in the case where Pro-
gram or “look-up tables’’ data is stored a method to load

§TST8 cLock 8224
GENERATOR HOLD REQ
AND DAIVER
| —
SYNC o2 o1 RESET
INT e
RDY 8080A CPU
1
WR 00-D7 DBIN HLDA AQ-A15
T 1 —
1)l
0 1] ‘ ,
Y gwow :?'821;_:0%555—3 l 87024 8302 8101-2 g;g;gj
Lo SY§TEM ! g205 BUFFERS/ | 8704 ROMs 8308 g1z Rams 3197
CONTROLLER DECODER = ;
- h_szws (OPTIONAL) | 3708 8316A 21022 5101 8222
1 i J I\ ‘

DATA 8US (8}

2 il

{}

CONTROL BUS (6}

IR

L
||

L 1]

T L 11

ADDRESS 8US (16}

]

=

5 ~ I 3 = prd
8251 170 R 8212
COMMUNICATION 8255
INTERFACE

1/0 18218 e oRITY
PERIPHERAL 8212
INTERFACE INTERRUPT

Figure 3-6. Microcomputer System

2-46

April, 1877
£300b

RAM memory must be provided, such as: Floppy Disk,
Paper Tape, etc.

The CPU treats RAM in exactly the same manner as
ROM for addressing data to be read. Writing data is very
similar; the RAM is issued an address during the first por-
tion of the Memory Write cycle (T1 & T2) in T3 when the
data that is to be written is output by the CPU and is stable
on the bus an MEMW command is generated. The MEMW
signal is connected to the R/W input of the RAM and
strobes the data into the addressed location.

In Figure 3-7 a typical Memory system is illustrated
to show how standard semiconductor components interface
to the 8080 bus. The memory array shown has 8K bytes
(8 bits/byte) of ROM storage, using four intei®8218As
and 512 bytes of RAM storage, using Intel 8111 static
RAMs. The basic interface to the bus structure detailed
here is common to aimost any size memory. The only ad-
dition that might have to be made for larger systems is
more buffers (8216/8212) and decoders (8205) for gener-
ating ‘‘chip selects.”

The memories chosen for this example have an access
time of 850 nS (max) to illustrate that slower, economical
devices can be easily interfaced to the 8080 with little ef-
fect on performance. When the 8080 is operated from a
clock generator with a tCY of 500 nS the required memory
access time is Approx. 450-550 nS. See detailed timing
specification@Pg. 5-16. Using memory devices of this speed
such as Intel 8308, 8102A, 8107A, etc. the READY input
to the 8080 CPU can remain ‘‘high’’ because no ‘‘wait’’
states are required. Note that the bus interface to memory
shown in Figure 3-7 remains the same. However, if slower
memories are to be used, such as the devices illustrated
{8316A, 8111) that have access times siower than the min-
imum requirement a simple logic control of the READY
input to the 8080 CPU will insert an extra "‘wait state’’ that
is equal to one or more clock periods as an access time
“adjustment’’ delay to compensate. The effect of the extra
“‘wait’’ state is naturaily a siower execution time for the
instruction. A single ““wait” changes the basic instruction
cycle to 2.5 microSeconds.

8K + 512 8K 0
AAM ROM
MEMORY MAP
ROM
RAM 11
1 1]
am 8111 8316A cs3
. cs2
R/W 0D 1/01-4 AQ-A7 R/W 0D 11014 AQ-A7 S 01-08 AQ-A10
L VAN ’ FAN AN
MEMW MEMR AQ-A7 FEAW MEMA AQ-A7 VEVA AG-ATD :1112-
' DATA BUS (8)

CONTROL BUS {6)

ADDRESS BUS (16}

Figure 3-7. Typical Memory Interface

April, 1977
83C0b

2-47

1/0 INTERFACE
General Theary

As in any computer based system, the 8080 CPU must
be able to communicate with devices or structures that exist
outside its normal memory array. Devices like keyboards,
paper tape, floppy disks, printers, displays and other control
structures are used to input information into the 8080 CPU
and display or store the results of the computational activity.

Probably the most important and strongest feature of
the 8080 Microcomputer System is the flexibility and power
of its 1/O structure and the components that support it. There
are many ways to structure the !/Q array so that it will '‘fit”
the total system environment to maximize efficiency and
minimize component count.

The basic operation of the I/O structure can best be
viewed as an array of singie byte memory locations that can
be Read from or Written into. The 8080 CPU has special in-
structions devoted to managing such transfers (IN, OQUT).
These instructions generally isolate memory and {/O arrays
so that memory address space is not effected by the I/0
structure and the general concept is that of a simple transfer
to or from the Accumulator with an addressed "PORT"”. An-
other method of 1/0 architecture is to treat the /O structure
as part of the Memory array. This is generaily referred to as
“Memory Mapped /O and provides the designer with a
powerful new “instruction set’’ devoted to 1/0O manipulation.

ISOLATED I/Q
e e e e et -
I 0 . 55K |
| . |
i
! MEMORY :
' 45 !
! |
] 256 i
!

! J
! [1{>] |
!)
' i
! 4
| itk i
! 5] 32K 65K |
‘ i
: MEMORY /o |
| |
i MEMORY MAPPED 1/Q !
e e e e e = = -~ — ot 1

Figure 3-8. Memory/1/O Mapping.

Isolated 1/0

In Figure 3-9 the system control signals, previously de-
tailed in this chapter, are shown. This type of 1/0O architecture
separates the memory address space from the 1/O address
space and uses a conceptually simple transfer to or from Ac-
cumulator technique. Such an architecture is easy to under-
stand because /0 communicates only with the Accumulator
using the IN or OUT instructions. Also because of the isola-
tion of memory and 1/0, the full address space (65K) is un-
effected by 1/O addressing.

2-43

|_ TO MEMORY
DEVICES

— TO 1/Q DEVICES

Figure 3-9. Isolated 1/0.

Memory Mapped 1/0

By assigning an area of memory address space as 1/0 a
powerful architecture can be developed that can manipulate
1/O using the same instructions that are used to manipulate
memory locations. Thus, a ‘‘new’’ instruction set is created
that is devoted to 1/0 handling.

, As shown in Figure 3-10, new control signals are gene-
rated by gating the MEMR and MEMW signais with A1s, the
most significant address bit. The new 1/O control signals con-
nect in exactly the same manner as Isolated /O, thus the
system bus characteristics are unchanged.

By assigning A 15 as the 1/0 “flag”’, a simple method of
1/0 discipline is maintained:

If Aqgis a “zero” then Memory is active.
If A5 is a “one’” then 1/O is active.

Other address bits can also be used for this function. A5 was
chosen because it is the most significant address bit so it is
easier to control with software and because it still allows
memory addressing of 32K.

1/Q devices are still considered addressed “‘ports’” but
instead of the Accumuiator as the only transfer medium any
of the internal registers can be used. All instructions that

could be used to operate on memory locations can be used
in 1/0.

Examples:

MOVr, M (Input Port to any Register)
MOV M, r (Output any Register to Port)
MVIM (Output immediate data to Port)
LDA {Input to ACC})

STA (QOutput from ACC to Port}
LHLD (16 Bit Input)

SHLD (16 Bit Qutput)

ADD M (Add Port to ACC)

ANA M ("AND" Port with ACC)

It is easy to see that from the list of possible “new’
instructions that this type of /O architecture could have a
drastic effect on increased system throughput. It is concep-
tually more difficult to understand than Isolated I/0O and it
does limit memory address space, but Memory Mapped 1/0
can mean a significant increase in overall speed and at the
same time reducing required program memory area.

April, 1977
88CGb

MEMR 0
MEMORY
WENW DEVICES
SYSTEM
CONTROL
(8228) 70 R (MM)
10 /0
DEVICES
70 W (VM)

Figure 3-10. Memory Mapped 1/0.

1/0 Addressing

With both systems of {/O structure the addressing of
each device can be configured to optimize efficiency and re-
duce component count. One method, the most common, is
to decode the address bus into exclusive “chip selects’” that
enable the addressed 1/O device, similar to generating chip-
selects in memory arrays.

Another method is called “linear select”. In this method,
instead of decoding the Address Bus, a singular bit from the
bus is assigned as the exclusive enable for a specific 1/0 de-
vice. This method, of course, limits the number of |/O de-
vices that can be addressed but eliminates the need for extra
decoders, an important consideration in small system design.

A simple exampie illustrates the power of such a flexi-
bie 1/0 structure. The first example illustrates the format of
the second byte of the IN or OUT instruction using the iso-
fated 1/Q technique. The devices used are Intei®8255 Pro-
grammable Peripheral Interface units and are linear selected.
Each device has three ports and from the format it can be
seen that six devices can be addressed without additional de-
coders.

EXAMPLE #

Lo 2] % | A

s sl e |]

L
PORT SELECTS

L . S —

DEVICE SELECTS

ADDRESSES - 6 ~ 82555
(18 PORTS — 144 BITS)

Figure 3-11. Isolated 1/O — (Linear Select) (8255)

April, 1677
8500t

The second example uses Memory Mapped /O and
linear select to show how thirteen devices (8285) can be ad-
dressed without the use of extra decoders. The format shown
could be the second and third bytes of the LDA or STA in-
structions or any other instructions used to manipulate 1/0
using the Memory Mapped technigue.

It is easy to see that such a flexible 1/Q structure, that
can be “‘tailored’’ to the overall system environment, provides
the designer with a powerful tool to optimize efficiency and
minimize component count.

EXAMPLE #2

IA7[A'1A5lA';}A3xA2|A1J1A‘Jl

-
J— PORT SELECTS

—]

DEVICE SELECTS

AﬂIAuIAu]Au!AnlAm{ Asl A‘a]

’ 4

e

' ettt DEVICE SELECTS

i=1/0
Q = MEMORY

/0 FLAG

ADDRESSES - 13 — 8255
(39 PORTS — 312 81TS)

Figure 3-12. Memory Mapped 1/0 — (Linear Select (8255)

1/Q Interface Exampie

In Figure 3-16 a typical 1/Q system is shown that uses a
variety of devices (3212, 8251 and 8255). It could be used
to interface the peripherals around an intelligent CRT termi-
nals; keyboards, display, and communication interface. An-
other application could be in a process controlier to interface
sensors, relays, and motor controis. The limitation of the ap-
plication area for such a circuit is solely that of the designers
imagination.

" The 1/O structure shown interfaces to the 8080 CPU
using the bus architecture developed previously in this chap-

ter. Either lIsolated or Memory Mapped techniques can be
used, depending on the system 1/Q environment.

The 8251 provides a serial data communication inter-
face so that the system can transmit and receive data over
communication links such as telephone lines.

2-49

Lolelofal [+ X

L— C/D CONTROL

0 -DATA

8251 SELECT
(ACTIVE LOW)

1 - COMMAND

Figure 3-13. 8251 Format.

The two {2) 8255s provide twenty four bits each of
programmable |/O data and control so that keyboards, sen-

sors, paper tape, etc,, can be interfaced to the system.

The three 82125 can be used to drive long tines or LED
indicators due to their high drive capability. (15mA)

IMEJTPIW'D®Q

8212 31 SELECT
(ACTIVE HIGH)

8212 22 SELECT
{ACTIVE HIGH}

8212 =3 SELECT
(ACTIVE HIGH)

Llelofrala]s]a]

} PORT SELECT

00 - PORT A

01 -PORTB
18 -PORTC

11 -~ COMMAND

Figure 3-15. 8212 Format.

Addressing the structure is described in the formats il-
lustrated in Figures 3-13, 3-14, 3-15. Linear Select is used so
that no decoders are reguired thus, each device has an ex-
clusive ‘‘enable bit”. '

8285 #1 SELECT .
{ACTIVE LOW} The example shows how a powerful yet flexible |/0
ﬁé}%éi’fﬁf structure can be created using @ minimum component count
with devices that are all members of the 8080 Microcomputer
System,
Figure 3-14. 3255 Format.
SERIAL DATA
COMMUNICATION @ @ @
! } ‘
#2 =1
8251 8255 8255
A0 WR Dy-By ¢E €D AD WA Dy-Dy &5 Ay Ay AD WR Dy09 FF Ay A4
(S I [*) ¥ O [e] v} [¢]
IGE! oW @ Ag 1Ay 7o R iow] Ay [Ag (A i RT ilow Ay |Ag | A
]
¢ DATA 8US)
§ CONTROL 8US !
(ADDRESS BUS {
Tk . ;
) : 2 L~z
Os1 0s2 Ds1 Ds2 [*23] Ds2
8212 8212 8212
=3 = 1
) MO MO
Vcc Vcc Vcc

Figure 3-16. Typical /O Interface.

2-50

Aoril, 1577
2800b

A computer, no matter how sophisticated, can only
do what it is “"told"’ to do. One '‘teils” the computer what
to do via a series of coded instructions referred to as a Pro-
gram. The realm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to ail of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit {CPU) with the ability to per-
form a particuiar set of oper.ations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Consequently,
the operations that can be performed by a CPU define the
computer’s instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions (e.g.,
increment a register) are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an 1/Q device. Most instruction
sets also provide Conditionai Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the resuit of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logicaily organizing a sequence of instructions into
a coherent program, the programmer can “tell” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1's and 0's), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

April, 1877
3800b

are programs available which convert the programming lan-
guage instructions into machine code that can be inter-
preted by the processor.

One type of programming language is Assembly Lan-
guage. A unique assembly language mnemonic is assigned to
each of the computer’s instructions. The programmer can
write a program (called the Source Program} using these
mnemonics and certain operands; the source program is
then converted into machine instructions (called the Object
Codae). Each assembiy language instruction is converted into
one machine code instruction {1 or more bytes) by an
Assembler program. Assembly languages are usually ma-
chine dependent (i.e., they are usually abie to run on only
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set inciudes five different types
of instructions:

o Data Transfer Group—move data between registers
or between memory and registers

o Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

o Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

e Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

e Stack, 1/O and Machine Control Group — includes
1/0 instructions, as weil as instructions for main-
taining the stack and internai controi flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quantij
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory.

2-51

The 8080 can directly address up to 65,536 bytes of mem-
ory, which may consist of both read-only memory (ROM)
elements and random-access memory {RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary
integers:
DATA WORD

D7l DlesI D4lDzrDle1 IDo
MSB LS8

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. in the Intel 8080, BIT 0 is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
{MSB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

D-;l L Do | Cp Code
Two-Byte Instructions
Byte One | Dy L Do | Op Code
ByteTwo |Dy' o ' 1 T T Tp Data or
Three-Byte lnstruction;
ByteOne |D;' ' ' ' T T 1o lopcode
Byte Two | D5 IR N B B Do |) Data
Byte Three D7l o oo Do Jz’ddress
Addressing Modes:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

® Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the register or
register-pair in which the data is located.

¢ Register Indirect — The instruction specifies a reg-
o_52 ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

® Immediate — The instruction contains the data it-
self. This is either an 8-bit quantity or a
16-bit quantity {least significant byte first,
most significant byte second).

Uniess directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

® Direct - The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST’ instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.}

® Register indirect — The branch instruction indi-
cates a register-pair which contains the
address of the next instruction to be exe-
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte cail instruc-
tion (usually used during interrupt sequences). RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit fieid.

Condition Flags:

There are five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is “‘set’’ by forcing the
bit to 1; “reset” by forcing the bit to O.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero: If the resuit of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of

the operation has the value 1, this flag is
set; otherwise it is reset.

If the modulo 2 sum of the bits of the re-
suit of the operation is 0, (i.e., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

Parity:

Carry: If the instruction resulted in a carry
{from addition), or a borrow (from sub-

traction or a comparison) out of the high-

order bit, this flag is set; otherwise it is
reset,

April, 1977
88CCb

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and into bit 4 of the resuiting
value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and iog-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The foilowing symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS MEANING

accumulator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 | 16-bit data quantity

byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an /0 device
rrlr2 One of the registers A,B,C,D,EH.L

DDD,SSS The bit pattern designating one of the regis-
ters A B,C,D,E,H,L (DDD=destination, SSS=
source):

DDD or SSS REGISTER NAME

111
000
001
010
o1
100
101

p One.of the register pairs:

rTITMmMoOm)

B represents the B,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with H as the high-
order register and L as the low-order register;

SP represents the 16-bit stack pointer

register.
RP The bit pattern designating one of the regis-
ter pairs 8,D,H,SP: ’
RP REGISTER PAIR
00 B-C
01 D-E
10 H-L
11 SP

April, 1977
88C0b

rh

ri

PC

sP

m

The first (high-order) register of a designated
register pair,

The second {low-order) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order B bits respectively).

Bit m of the register r (bits are number 7
through O from left to right).

Z,S,P,CY AC The condition flags:

) |t*|+<<[>t

NNN

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enclosed in the parentheses.

“Is transferred to”’

Logical AND

Exclusive OR

Inclusive OR

Addition

Two’'s complement subtraction
Muitiplication

““ls exchanged with"”

The one’s complement (e.g., {A})
The restart number Q through 7

The binary representation 000 through 111
for restart number 0 through 7 respectively.

Description Format:

The foilowing pages provide a detailed description of
the instruction set of the 8080. Each instruction is de-
scribed in the following manner:

1.

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the ieft side of the first
line. A

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s} contain a symbolic description

of the operation of the instruction.

. This is followed by a narative description of the

operation of the instruction.

. The following line{s} contain the binary fields and

patterns that comprise the machine instruction.

2-33

6. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and states required to exe-
cute the instruction are listed first. if the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a slash. Next, any significant data ad-
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Condition flags are not affected by

any instruction in this group.

MOV r1, 12
{r1) = {r2)

(Move Register)

The content of register r2 is moved to register r1.

o' 1] o 'top

DSIS'S

Cycles:
States:
Addressing:
Fiags:

MOV, M
{r} =— ((H) (L))

1

5
register
none

{Move from memory)

The content of the memory location, whose address
is in registers H and L, is moved to register r.

o' 1ol o o[1T 1Ty
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
MOV M, r {(Move to memory)

((H) (L)) =— ()

The content of register r is moved to the memory lo-
cation whose address is in registers H and L.

ol g el st sl
Cycles: - 2
States: 7
Addressing: reg. indirect
Flags: none
2-54

MV1 r, data

(Move Immediate)

{r) =— (byte 2)

The content of byte 2 of the instruction is moved to
register r.

ool oo "o 1T 11
data
Cycles: 2
States: 7
Addressing: immediate
Flags: none
MVI M, data {Move to memory immediate)

((H) (L)) -— (byte 2)

The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

LXI rp, data 16

ol ol 1y gt T 11T
data
Cycles: 3
States: 10
Addressing: immed./reg. indirect

Flags: none

{Load register pair immediate)

(rh) <= (byte 3},

(rl) =— (byte 2)

Byte 3 of the instruction is moved into the high-order
register {rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register (r) of
the register pair rp.

o o] RV p| ol ol ol
low-order data
high-order data
Cycles: 3
States: 10
Addressing: immediate

Flags: none

April, 1977
280ch

LDA addr

{Load Accumulator direct)
(A) <— ({byte 3)(byte 2))
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
" moved to register A,

STA addr

o To gy Ty Ty hgl ¢ Ty
low-order addr
high-order addr
Cycles: 4
States: 13
Addressing: direct

Flags: none

(Store Accumulator direct)

{{byte 3)(byte 2)) = (A}

The content of the accumulator is moved to the
memory location whose address is specified in byte
2 and byte 3 of the instruction.

| i] !

o lo g Ti o tagly by

low-order addr

nigh-order addr

LHLD addr

Cycles: 4
States: 13
Addressing: direct

Flags: none

{Load H and L direct)

(L) == ({byte 3}(byte 2))

(H) =— ((byte 3){byte 2) + 1)

The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memaory loca-
tion at the succeeding address is moved to register H.

ll ! 1 I

o lo oty Tglty Ty

low-order addr

high-order addr

Cycles: 5
States: 16
Addressing: direct

Fiags: none

April, 1977
8800b

SHLD addr

{Store H and L direct)

({byte 3){byte 2)) = (L)

({byte 3){byte 2) + 1) == (H)

The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location,

o lol 1 Tolo ol

low-order addr

high-order addr

Cycles: 5
States: 16
Addressing: direct
Flags: none
LDAX rp (Load accumulator indirect)
{A} =— ({rp})

The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=8 (registers B and C) or rp=D
(registers D and E) may be specified.

o "o lRr'p]1lalq Ty
Cycles: 2
States: 7
Addressing: reg. indirect
Fiags: none
STAX rp {Store accumulator indirect)
((rp)) =-— (A)

The content of register A is moved to the memory io-

cation whose address is in the register pair rp. Note:
only register pairs rp=8 (registers B and C) or rp=D

(registers D and E) may be specified.

oo lr'"Pplolol1 o
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none
XCHG (Exchange H and L with D and E)
(H) == (D)
(L) =—(E)

The contents of registers H and L are exchanged with
the contents of registers D and E.

y T Ty T g Tg Tg Ty
Cycles: 1
States: 4
Addressing: register
Flags: none

Arithmetic Group:

This group of instructions performs arithmetic oper-
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All subtraction operations are performed via two’s
compiement arithmetic and set the carry flag to one to in-
dicate a borrow and clear it to indicate no borrow,

ADDr (Add Register)
(A) =— (A} +{r)
The content of register r is added to the content of the
accumulator. The resuit is placed in the accumulator.

ADCr (Add Register with carry)
(A) =— (A) +(r) +(CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator,

1P ol ol ot 1 [TsTgTyg
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P,CY,AC
ADC M (Add memory with carry)

(A} == (A} + {(H) (L)} + (CY)

The content of the memory location whose sddress is
contained in the H and L registers and the content of
the CY flag are added to the accumulator. The resuit
is placed in the accumulator.

1ol ol gl g s TsTs
Cycles: 1
States: 4
Addressing: register
Fiags: Z,S,P.CY AC
ADD M (Add memory}

(A) =— (A} + ((H) (L))

1]010101]1f1|0
Cycles: 2
States: 7
Addressing: regq. indirect
Flags: 2Z,8,P,CY AC
ACl data (Add immediate with carry)

The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

(A) == {A) + (byte 2) + (CY)

The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The resuit is piaced in the

1ol ol o
Cycles: 2
States: 7
Addressing: regq. indirect
Flags: Z,8,P,CY.AC

accumuiator.

ADI data (Add immediate)
(A) -— (A) + (byte 2)
The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator,

1 b T T T T T,
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,P,CY,AC
Susr (Subtract Register)

(A) -— (A) = (1)

The content of register r is subtracted from the con-
tent of the accumulator. The result is placed in the
accumuiator.

1’1'.0"0'0‘1'1,0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,P.CY.AC

2-56

1 e oty T s Ts Ts
Cycles: 1
States: 4
Addressing: register
Flags: Z,5P,CY.AC

April, 1977
3800b

SUBM

(Subtract memory)

(A} =— (A) — ({H) (L))

The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The result is placed
in the accumulator.

SB1 data

(Subtract immediate with borrow)

(A} =— (A) — (byte 2) = (CY)

The contents of the second byte of the instruction
and the contents of the CY flag are both subtracted
from the accumuiator. The result is placed in the
accumulator.

T o To 1 To V111 1o PR R B EPE I BV B
Cycles: 2 data
States: 7
Addressing: reg. indirect CS‘Z::: 3
Flags: ZSP.CYAC Addressing: immediate
Flags: Z,SP.CY.AC
SU! data (Subtract immediate)
(A) ~— (A) — (byte 2)
The content of the second byte of the instruction is INR r (Increment Register)

subtracted from the content of the accumuliator. The

. . (r) ==— {r}+1
result is placed in the accumulator.

The content of register r is incremented by one.

l i | |] |] Note: All condition flags except CY are affected.
1 1 0 1 0 1 1 0]
data ololo olo|1'o'lo
Cycles: 2 Cycles: 1
States: 7 States: 5
Addressing: immediate Addressing: register
Flags: 2Z,8,P.CY.AC Flags: Z,SPAC
SBBr (Subtract Register with borrow) INRM {Increment memory)

(A) == (A) —{r) = (CY)

The content of register r and the content of the CY
flag are both subtracted from the accumuiator. The
result is placed in the accumulator.

{{H) (L)) == {{H} (L)} +1

The content of the memory location whose address
is contained in the H and [registers is incremented
by one. Note: All condition flags except CY are

affected.
T ol ol 1T 1] st st
| J ! i ! { i
0 0 1 1 0 1 0 0]
Cycles: 1
States: 4 Cycles: 3
Addressing: register States: 10
Flags: Z,5PCY.AC Addressing: reg. indirect
Flags: 2Z,S5,P,AC
SB8 M (Subtract memory with borrow)

(A) -— (A) = ({H) (L)) = (CY)
The content of the memory location whose address is DCRr {Decrement Register)

contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-

tor. The resuit is placed in the accumulator.

{r) =-— (r) =1

The content of register r is decremented by one.
Note: All condition flags except CY are affected.

1|0I0|1]111!1|0 OIO'DIDlD[1]’OI1
Cycles: 2 Cycles: 1
States: 7 States: 5
Addressing: reg. indirect Addressing: register
Flags: Z,SP.CY,AC Flags: Z,S,P,AC
April, 1977 2-57

3800b

DCR M (Decrement memory)

((H) (L)} == ((H) (L)} -1

The content of the memory location whose address is
contained in the H and L registers is decremented by
one, Note: All condition flags except CY are affected.

ol ol s T T T3 T4 T,

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: 2,5,P.AC

INX rp {Increment register pair)

(rh) {rl) <=— (rh} (rl) +1
The content of the register pair rp is incremented by
one, Note: No condition flags are affected.

ool RrRTelolol, T,
Cycles: 1
States: 5

Addressing: register
Flags: none

DCX rp {Decrement register pair)

{rh) (rl) =— (rh) (r)) =1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

0 | 0 R] P 1 | 0 ! 1 ! 1
Cycles: 1
States: 5
Addressing: register
Flags: none
DAD rp {Add register pair to H and L)

{H) (L) —=— (H) (L) + (rh)} (r})

The content of the register pair rp is added to the
content of the register pair H and L. The resuit is
placed in the register pair H and L. Note: Oniy the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

0 , 0 R l P 1 ! 0 ! 0 ! 1
Cycles: 3
States: 10
Addressing: register
Flags: CY
2-58

DAA {Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted
to form two four-bit Binary-Coded-Decimal digits by
the following process:

1. If the.value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator,

2. If the value of the most significant 4 bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: Al flags are affected.

ool s T T T T 1T,

Cycles: 1
States: 4
Flags: 2Z,5,P,CY.AC

Logical Group:

This group of instructions performs logical {Boolean)
operations on data in registers and memory and on condi-
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA'r (AND Register)
(A) =— (A)A(r)
The content of register r is logically anded with the
content of the accumuiator. The result is placed in
the accumulator. The CY flag is cieared.

1 oy ToTog T s Ts Ty
Cycles: 1
States: 4
Addressing: register
Flags: 2Z,S,P,CY,AC
ANA M {AND memory)

(A) =— (A)A((H) (L)

The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The resuit is
placed in the accumulator. The CY flag is cleared.

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,5,P,CY AC

April, 1977
£800b

ANI data

{(AND immediate)

(A} == (A) A (byte 2)

The content of the second byte of the instruction is
logically anded with the contents of the accumuiator.
The result is placed in the accumuiator. The CY and
AC flags are cleared.

ORATr

{OR Register)

(A) =— (A} V (r)

The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1 tolq 11 Tols s s
Cycles: 1
States: 4
Addressing: register
Flags: 2Z,5,P,CY,AC
ORA M (OR memory)

(A) == (A) V ({H) (L))

1'1'1'0'0'1'1'0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,5,P.CY.AC
XRATr (Exclusive OR Register)

(A) =— (A} ¥ (r)

The content of register r is exclusive-or’d with the
content of the accumulator. The resuit is placed in
the accumulator. The CY and AC flags are cieared.

The content of the memory location whose address is
contained in the H and L registers is inclusive-OR’d
with the content of the accumuiator. The result is
piaced in the accumulator. The CY and AC flags are
cleared.

1 ! 0 ! 1 ! 0 ! 1 S ! S I S
Cycles: 1
States: 4
Addressing: register
Fiags: Z,SP.CY,AC
XRAM (Exclusive OR Memory)

{A) =— (A) ¥ ({H) (L)

The content of the memory location whose address
is contained in the H and L registers is exclusive-OR’d
with the content of the accumuiator. The result is
placed in the accumuiator. The CY and AC flags are
cleared.

XR1 data

y T ol 1 1ol Ty by Ty
Cycles: 2
States: 7
Addressing: reg. indirect

Flags: Z,SP.CY,AC

{Exclusive OR immediate)

(A) =— (A) ¥ (byte 2)

The content of the second byte of the instruction is
exclusive-OR‘d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1‘1"1I0!1l1]1|0

y 1ol 1 T3 T Ty by Ty
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z2,5,P.CY,AC
ORI data (OR Immediate)

(A) =— (A) V {byte 2)

The content of the second byte of the instruction is
inclusive-OR’'d with the content of the accumulator.
The resuit is placed in the accumuiator. The CY and
AC flags are cleared.

T 5 1o 14

11 g 0
data
Cycles: 2
States: 7
Addressing: immediate
Ftags: Z,S,PCY.AC
CMP r {Compare Register)

(A} - (0

The content of register r is subtracted from the ac-
cumuiator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A} = {r). The CY flag is set to
1if (A) < (r}.

data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,SPCY,AC

—

S

~1

April,
8800b

T To 111101]slhsts
Cycles: 1
States: 4
Addressing: register
Fiags: Z,S,P{CY,AC
2-59

cmP M

(Compare memory)

(A} = ({H) (L))

The content of the memoary location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumuiator remains un-
changed. The condition flags are set as a resuit of the
subtraction. The Z flag is set to 1 if (A) = ((H) (L)).
The CY flag is set to 1 if (A) < ({(H) (L)).

1o b T T T T T,
Cycles: 2
States: 7
Addressing: reg, indirect
Flags: Z,S,P.CY.AC
CPt data (Compare immediate)

(A} — (byte 2)

The content of the second byte of the instruction is
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The 2 flag is
set 1o 1 if (A} = (byte 2). The CY flag is set to 1 if
(A) < {byte 2).

RLC

1 0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,5,P,CY,AC

(Rotate left)
(Ant1) =— (A i (Ag) =— (Aq)
(CY) =— (A7)
The content of the accumuiator is rotated feft one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-
tion. Only the CY flag is affected.

0]0|01010l1l1'1
Cycles: 1
States: 4
Flags: CY

2-60

RRC

‘ (Rotate right)

(Ap) == {An.1); (A7) =— (Ag)

(CY) —=— (Ao) '

The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-
tion. Only the CY flag is affected.

ol ol ooty T T T,
Cycles: 1
States: 4
Flags: CY
RAL {Rotate left through carry)

(An+1) =— (An) ; (CY) = (A7)

(Ag) =— (CY)

The content of the accumulator is rotated left one
position through the CY ffag. The low order bit is set
equal to the CY flag and the CY fiag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

! ! ! ! { | 1

RAR

0 0 0 1 0 1 1 1
Cycles: 1
States: 4
Flags: CY

{Rotate right through carry)
(Ap) =— (Aps1) ; (CY) =— (Ag)
(Ag) =— (CY)
The content of the accumulator is rotated right one
position through the CY flag. The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Oniy the CY flag is
affected.

OIO

cMAa

0 1 1 1 1 1
Cycies: 1
States: 4
Flags: CY

(Complement accumulator)
(A) =— (A)
The contents of the accumuiator are compiemented
{zero bits become 1, one bits become 0}. No flags are
affected.

0'0'1'0]111]1’1
Cycles: 1
States: 4
Flags: none

Aoril, 1977
8800b

cMC

{Complement carry)
(CY) =— (CY)
The CY flag is compiemented. No other flags are
affected.

0'0'111[1!1]1I1
Cycles: 1
States: 4
Flags: CY
sTC (Set carry)
(CY) =1

The CY flag is set to 1. No other flags are affected.

ol ol 1T 1Ty ety

Cycles: 1
States: 4
Flags: CY

Branch Group:

This group of instructions alter normai sequentiai

program flow,

Condition flags are nat affected by any instruction

in this group.

The two types of branch instructions are uncondi-

tional and conditional. Unconditional transfers simpiy per-
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to be executed. The conditions that may be specified are

as follows:
CONDITION) ccc
NZ — notzero{Z2=0) 000
2 ~- zero(Z=1) 001
NC ~ nocarry (CY=0) 010
C = carry (CY =1) 011
PO — parity odd (P =0} 100
PE — parity even (P = 1) 101
P - plus(S=0) 110
M — minus{S=1) 111
JMP addr (Jump)

{PC) ~— (byte 3} (byte 2}
Control is transferred to the instruction whose ad-

Aoril, 1977
8800b

dress is specified in byte 3 and byte 2 of the current
instruction.

Jeondition addr

r 11 ToTlaolo ol Ty
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate

Flags: none

{Conditional jump)
if (CCC),

(PC) ~— (byte 3) (byte 2)
If the specified condition is true, controi is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other-
wise, control continues sequentiaily.

i T 1l clclceclolrla

low-order addr
high-order addr
Cycles: 3

States: 10

Addressing: immediate
Flags: none
CALL addr (Call)

({SPY — 1) == (PCH)

((SP) — 2} =— (PCL)

(SP) ~— (SP) -2

(PC) —— (byte 3) (byte 2}

The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

low-order addr

high-order addr

Cycles: 5
States: 17
Addressing: immediate/reg. indirect

Flags: none

2-61

Cconditicn addr {Condition call)
If (CCC),
{{SP) — 1) «— (PCH)
{(SP) — 2) -— (PCL)
(SP) —— (SP) -2
(PC) <— (byte 3) (byte 2)
If the specified condition is true, the actions specified
in the CALL instruction (see above) are performed;

otherwise, control continues sequentially.

1Pl e T eTcel 1T 0T,

low-order addr

high-order addr

Cycles: 3/5
States: 11/17
Addressing: immediate/reg. indirect

Flags: none

RET {Return}
{PCL) —— ({SP));
{PCH) «— ((SP) + 1);
(SP) =— (SP) + 2;

The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
lacation whose address is one more than the content
of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented

by 2.
]
1".'01011'010[1
Cycles: 3
States: 10
Addressing: req. indirect
Flags: none
Rcondition (Conditional return)
If (CCC),

(PCL) —— ((SP))

{PCH) —— ({SP) + 1)

{SP) =-— (SP) +2
If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, control continues sequentially.

1 ! 1 Cc ! o ‘ c 0 | 0 ! 0]
Cycles: 1/3
States: 5/11
Addressing: reg. indirect

Flags: none

2-62

RSTn (Restart)
{(SP) — 1) ~— (PCH)
((SP) - 2) =— (PCL)
(SP) =— (SP) —2
{PC) =— 8+ (NNN})
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN,

i ! 1 N ! N ! N 1 ! 1 I 1
Cycles: 3
States: 11
Addressing: regq. indirect

Flags: none

151413121110 9 8 7 6 5 4 3 2 1 0
lofo]ofofofoJo]oo]o[n[N[N][0]0]0]

Program Counter After Restart

PCHL {Jump H and L indirect — move H and L to PC)
(PCH) ~— (H)

(PCL) =— (L)

The content of register H is moved to the high-order
eight bits of register PC. The content of register L is

moved to the low-order eight bits of register PC.

P Ty Ty T g T g T,
Cycles: 1
States: 5
Addressing: register

Fiags: none

April, 1877
8200b

Stack, 1/0, and Machine Control Group:

This group of instructions performs {/0, manipulates
the Stack, and aiters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

PUSH rp (Push)

{{SP} = 1) == (rh)

({SP) = 2) == (ri)

(SP) =— (SP) =2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified.

T] " e o 1t ol
Cycles: 3
States: 11

Addressing: reg. indirect
Fiags: none

PUSH PSW {Push processor status word)
((SP) — 1) = (A}
((SP) — 2)g == (CY), ((SP) =2}y =— 1
((SP) =2)g =— (P}, ({SP})=2)g3 =0
({SP) = 2)4 ~— (AC) , {{SP} = 2}g =— O
({SP) — g <= (2), (SP) =2}y = (S)
(SP) ~— (SP) -2
The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags are assembled
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by two.

1T P T T Ty g Ty

Cycles: 3
States: 11
Addressing! reg. indirect
Flags: none

April, 1977
25C0b

FLAG WORD

POP rp (Pop)

(rl) —=— ((SP})

{rh) —— ((SP) + 1)

(SP) =— (SP} +2

The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Note: Register pair
rp = SP may not be specified.

1 I 1 R ! P 0 ! 0 l 0 I 1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none
POP PSW {(Pop processor status word)

(CY) =— ((SP))g

(P} =— ((SP)}y

{AC) —— {(SP))4

(2) =— ((SP))g

{8) =~ ((SP))7

(A) - ({SP)+ 1)

(SP} = (SP} +2

The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2.

1[1]111‘0l0|0]1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z,S,P,CY,AC
2-63

XTHL

(Exchange stack top with H and L)
(L} - ((SP))
(H} == ((SP) + 1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP,

1'1'1'010l01111
Cycles: 5
States: 18
Addressing: reg. indirect
Fiags: none
SPHL (Move HL to SP)

{SP) =— (H} (L)
The contents of registers H and L (16 bits) are moved
to register SP.

I ! I I f

1

1 1 1 0 0 1
Cycles: 1
States: 5
Addressing: register
Flags: none
IN port (Input)

(A) <— (data)
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A,

Ly b Ty T Ty T T,

port
Cycles: 3
States: 10
Addressing: direct
Flags: none
OUT port {Output)

(data) -— (A)

The content of register A is placed on the eight bit
bi-cirectional data bus for transmission to the spec-
ified port.

1 Ly b T Ty Ty T, T,

port
Cycles: 3
States: 10
Addressing: direct
Flags: none

2-64

El (Enabie interrupts)

The interrupt system is enabled following the execu-
tion of the next instruction.

1'1[111

Cycles:
States:
Flags:

D1 (Disable interrupts)

The interrupt system

1
4
none

is disabled immediately fol-

lowing the execution of the DI instruction.

T N

Pog T T4T7

Cycles:
States:
Fiags:

HLT (Halt)

1
4
none

The processor is stopped. The registers and flags are

unaffected.

0'1'1'1

Cycles:
States:
Flags:

NOP {No op)

1

none

No operation is performed. The registers and flags

are unaffected.

ol ol ol o T g T g Tg To
Cycles: 1
States: 4
Fiags: none

foril, 1977
88005

T

INSTRUCTION SET

Summary of Processor Instruetions

Instruetion Cadel!l Cloek (2! Instruction Code!!! Clack{2!

Mnemanic Oescription Dy Og Os 04 D3 D2 Oy Og Cycles Mnemonic Oescription Dy Og Os Dq O3 02 Dy Og Cycies
MOV,y, 2 Move register to register g 1+ 0 D O S § S 5 RZ Return on zero t 1 ¢ ¢ ¥ ¢ 0 0 5/11
MOV M, r Move register 10 memory Q0 1 1 1 0 § § § 7 RNZ Return on no zero 11 ¢ ¢ 0 0 C O §/11
MOV M Move memory to register 0 1 a 0 01 1 @ 7 RP Return on pasitive T 1 1 0 0 0 0 5/
HLT Hait 2 1 LA T+ S I 7 RM Return on minus 1 111 ¢ 0 0 s/
MVIr Move immediate register ¢ 8 0 0 O v 1 @ 7 RPE Aeturn on panity even 1 1t 0 't ¢ 0 0 8/11
MVIM Move immediate memary 0 0 1 1T 0 ¢ 1t 0 18 RPO Return on panty odd 1 1 1t ¢ 0 ¢ a0 0 L7AR|
INA ¢ Increment reqiste 00 0 0 0 1 0 0 S RST Restart 1 A A A 1Y 1 1
DCR ¢ Decrement register ¢ 0 0 D Ot ¢ 5 IN Ingut 10 1 a1t 10
INRM incremaent memory o0 0 v 1 ¢ 1 ¢ O 10 ouT Qutput 1Ty 0 t 0 0 11 10
DCA M Jecrament memory ¢ a v 1 0 1t 0 1 10 Lxi8 Load immediate register 29 0 O 0 0 0 Q0 1 10
AQG r Add register to A t 6§ 0 0 0 S S S 4 Pair8&C
AQC+ Add register to A with carry 1 0 0 0 1 S S S 4 Lx1 g Load immediate regster ¢ 06 o 1 0 3 0 1 10
SUBr Subtract register from A 1 9 6 ! 8 § S § 4 Pair0&E
SBB Subtract reguster fram A 1 ¢ 0 v 1 S § S 4 LXLH Load 1mmaediate register ¢ ¢ t o 0 0 9 1 10

with borrow Pair H& L
ANA ¢ And register with A 1t ¢ 1 0 0 8 S S 4 LXISP Load immediatastackpointer 0 0 t 1 0 0 O 1 10
XRA ¢ Exclusive O register wth A t ¢ 1 a 1 s 8 5§ 4 PUSHB Push register Pair 8 & C on t 1 g 0 0 1 91 1"
QRA Qr register with A 1 0 1 1 0 § § S 4 stack
CMPr Compare reqgister with A 1t ¢ ¢+ Y 1t § 8§ S 4 PUSH O Push register Par 0 & € on Tt 1 0 1 0 1 0 1"
AQOO M Add memory 1o A 1t ¢ 0 ¢ ¢ 1 1 O 7 stack
ADC M Add memaory to A with carry 1t g ¢ 0 1 1 1 @ 7 PUSH H Push reqister Pair H & L on 1 1 0 a0 1 0 1 11
SUB M Subtract memory from A 1t ¢ o 1 0 ' 1 0 7 stack
S8E M Subtract memory from A 1t ¢ 6 1 1 1 1 0 7 PUSH PSW Push A and Flags t1r o1 1 6 1 gt 1

with borrow an stack
ANA M And memory with A 1 0 t 0 0 1t 1o 7 POP 8 Pop register pair 8 & C off 11 2 6 0 0 0 ! i0
XRA M Exclusive Or memory with A t ¢ 1t @8 1 1 10 1 statk
QRA M Gr memory with A A1 S I AR | B B B 7 POP O Pop reqister paw 0 & E off Tt 8 1 0 0 0 1 10
CMP M Camoare mamuary with A 1 3 1 1 1 1 0 7 stack
ADI Add immediate 10 A P ¢ o 90 v 1t Q 7 POP H Pop register pair B & L off 1 i 9 0 40 ¢ 10
ACl Add immediate to A with | 6 ¢ 1t v 1 ¢ 7 stack

carry POPPSW Pop A and Flags 11 T 1 0 4 0 10
Sul Subtract :immediare from A 11 g + 0 t 1 0 7 atf stack
st Subtract immediate from A T Q T T T 7 6TA Stere A direct n 0 1 T8 0 1t 9 13

with borrow LBA Load A direct ¢ ¢ 1 1+ v Q 1 0 13
ANt And immediate with A tt 1 ¢ ¢ t 1 0 7 XCHG Exchange D& E H& L | S S R R R 4
XAl Exciusive Or immediate with T 1 1 0 11 1t e 7 Registers

A XTHL Excnange tap of stack H & L Tt 1 1 0 0 0 1 18
OR! Qr immediate with A 1 1 v2 7 10 7 SPHL H & L to stack ponter 11 1 1T 4 9 1 5
ch Compare immediate with A | AN A S T R S N | 7 PCHL H & L to program counter | N D T+ N Nt B | 5
RLC Rotate A left ¢ ¢ 0 0 0 v T 1 1 JA08 AddB&CtoHAL g ¢ 0 a0 Yy @& O ! 10
ARC Rotate A nght g0 0 0 vt 1 1 4 DADD Add 0 & EtoH&L (LN T I TS R T 0
RAL Rotste A left through carry g o 0 1 0 1 1 4 DAO H AddH& LwH&L 3 6 1t 0 1+ 0 Q9 1 5l
RAR Rotate A right through g o ¢ v 11 1 4 " DADSP Addstack panterto HS L a6 + t ot 0 9 1 10

carry STAX B Store A indirect ¢ 9 ¢ ¢ 0 0 1 G 7
JMP Juma unconditionat - tot ¢ ¢ 0 o 1 10 STAX D Store A indirect 9 0 0 1 0 0 1 0 7
i Jumg on carry t 1t 0 1 1 9 10 0 LOAX 8 Load A indirect 26 0 0 1V 0 1 3 7
INC Jumg on ne carry t1r 0 1 8 0 10 10 LDAXD Load A ndirect ¢ 6 0 1 1t ¢ 1 @ 7
3Z Jump an zerg Y 0 0 g 19 10 INX B Incrament 8 & C registers ¢ 0 0 8 0 0 v 1 5
INZ Jumg an na zers 1Ty 0 0 0 0 1t 8¢ 10 INX D increment O & £ reqisters 9 9 0 1 0 0 1 5
P Jump on positive LA T R I I 0 INX H increment K & L registers 009 1 0 2 0 1 5
M Jump on minus A R R A 10 INX SP Increment stack pointer 00 ' 1 9 0 1 1 5
JPE Jump on panty even LA R R R 10 0CxX 8 Decrament 8 & C 008 0 0 1 0 v 1 5
PO Jump on panity odd 1t 1 1 ¢ 9 0 1 0 10 ocx 0 Oecrement O & E 9 0 1] 1 t 0 ot 5
CALL Cail yncondinanai 11 ¢ 0 1 1 0 1 17 DCX H Decrement H & &] 1t 8 1t 8 1 1 5
cc Call on carry L T R nm oCX SP Decrament stack pointer 9 ¢ 1+ 1 1 90 1 5
CNC Cail on no carry 1t g t 06 1 0 0 IAFARS cMA Complement A 0 0 T 0 + 1 1t 4
cZ Cait on zero t 1 0 90 1 1 0 @ "7 STC Set carry g 0 1t v 0 1 1 4
CNZ Cail an no zero Tt g 0 0 t Q0 4@ 17 cMe Complement carry 0 0 1 1 t 1 1 t 4
cP Call on positive 1 1 10 1 a0 ¢ 11/17 0AA Decimal adiust A 7 ¢ 1 0 0 1+ 1 4
M Caif on minus | I HE S B | 1"y SHLD Storm H & L direct 6 0 1 0 ¢ 0 ' ¢ 16
CPE Cait on parity even 11 Tt 0t 1 0 0 1 LHLD Load H & L direct 0 0 t 0 1t a 1 90 16
£P0 Call on parity odd 11 t 9 0 ' 0 ¢ ARTANS El Enabte interrupts L 1 | I EE B R | 4
RET Aeturn 1 1 6 0 1.0 0 1 10 ot Disabie interrupt 1t 1 1 0 0 v 1t 4
AC Return on carry Tt 10 v 1t 0 0 @ s/ NOP No-operation 60 0 0 0 0 0 0 4
RNC Retuen on no carry 1 1 o 1 0 0 ¢ 0 ETAR

NOTES: 1. DODerSSS —-0008 - 001 C-0100 — 011 E—-100H - 101 L — 110 Memory — 111 A,
2. Two possibie cycie times, (5/11) indicate instruction cycles dependent on condition fiags.

April, 1877
8800b

2-65

ALTATR Bo00
SEGUIOL [

TWEDRY OF OPERATIO

3-1/(3-2 blank

