ALTAIR 8800 OPERATOR“S MANUAL

TABLE OF CONTENTS

PART ONE: Introductione.eeeeessessssssscsaseanccns 2

(Logie, Electrie Logic, Number Systems, The Binary
System, The Octal System, Computer Programming, A
Simple Program, Computer Languages)

PART TWO: Organization of the ALtail......ceeeve. 19

(Central Processing Unit, Memory, Clock, Input/Output)

PART THREE: Operation of the ALtair.............. 28

(Front Panel Switches and LED's, Loading a Sample Pro-
gram, Using the Memory, Memory Addressing, Operating
Hints)

PART FOUR: Altair 8800 Instruction Set.......cces 42

(Command Instructions, Single Register Instructions,
Register Pair Instructions, Rotate Accumulator In-
structions)

APPENDIX: In8truction Li8t...eesceeenascasscssces 87

o MITS, Inc., 1975

I -

“tragPie Electronis”

PRINTED IN U.S.A.

6328 LINN, N.E., P.0. BOX 8636, ALBUQUERQUE, N.M. 87108 U.S.A.
505/265-7553

PART 1 INTRODUCTION

Remarkable advances in semiconductor technclogy have made
possible the development of the ALTATR 8800, the most eco-
nomical computer ever and the first available in both kit
and assembled form. The heart of the ALTAIR 8800 is Intel
Corporation's Model 8080 Microcomputer, a complete Central
Processing Unit on a single silicon chip. Fabricated with
N-channel large scale integrated circuit (LSI) metal-oxide-
semiconductor (MOS) technology, Intel's 8080 Microcomputer
on a chip represents a major technological breakthrough.

This operating manual has been prepared to acquaint both the
novice and the experienced computer user in the operation

of the ALTAIR 8800. The computer has 78 machine language
instructions and is capable of performing several important
operations not normally available with conventional mini-
computers. After reading this manual, even a novice will

be able to load a program into the ALTAIR 8800.

Users of the ALTAIR 8800 include persons with a strong elec-
tronics background and little or no computer experience

and persons with considerable programming experience and
1ittle or no electronics background. Accordingly, this
manual has been prepared with all types of users in mind.
Part 1 of the manual prepares the user for better under-
standing computer terminology, technology, and operation
with an introduction to conventional and electronic logic,

a description of several important number systems, a discus-
sion of basic programming, and a discourse on computer lan-
guages.

Parts 2 and 3 in the manual describe the organization and
operation of the ALTATR 8800. Emphasis is placed on those
portions of the computer most frequently utilized by the
user. Finally, Part 4 of the manual presents a detailed
listing of the ALTAIR 8800's 78 instructions. An Appendix
condenses the instructions into a quick reference 1isting.

Even if you have little or no experience in computer oper-
ation and organization, a careful reading of this manual
will prepare you for operating the ALTAIR 8800. As you
gain experience with the machine, you will soon come to un-
derstand its truly incredible versatility and data proces-
sing capability. Don't be discouraged if the manual seems
too complicated in places. Just remember that a computer
does only what its programmer instructs it to do.

A. LOGIC

George Boole, a ninteenth century British mathematician,
made a detailed study of the relationship between certain
fundamental logical expressions and their arithmetic coun-
terparts. Boole did not equate mathematics with logic, but
he did show how any logical statement can be analyzed with
simple arithmetic relationships. In 1847, Boole published
a booklet entitled Mathematical Analysis of Logic and in
1854 he published a much more detailed work on the subject.
To this day, all practical digital computers and many other
electronic circuits are based upon the logic concepts ex-
plained by Boole.

Boole's system of logic, which is frequently called Boolean
algebra, assumes that a Togic condition or statement is
either true or false. It cannot be both true and false,
and it cannot be partially true or partially false. For-
tunately, electronic circuits are admirably suited for this
type of dual-state operation. If a circuit in the ON state
is said to be true and a circuit in the OFF state is said
to be false, an electronic analogy of a logical statement
can be readily synthesized.

With this in mind, it is possible to devise electronic equi-
valents for the three basic logic statements: AND, OR and
NOT. The AND statement is true if and only if either or all
of its logic conditions are true. A NOT statement merely
reverses the meaning of a logic statement so that a true
statement is false and a false statement is true.

It's easy to generate a simple equivalent of these three
logic statements by using on-off switches. A switch which

is ON is said to be true while a switch which is OFF is

said to be false. Since a switch which is OFF will not

pass an electrical current, it can be assigned a numerical
value of 0. Similarly, a switch which is ON does pass an
electrical current and can be assigned a numerical value of 1.

We can now devise an electronic equivalent of the logical
AND statement by examining the various permutations for a
two condition AND statement:

CONDITIONS CONCLUSION

(Inputs) (Output)
1. True AND True True
2. True AND False False
3. False AND True False
4. False AND False False

The electronic ON-OFF switch equivalent of these permuta-
tions is simply:

CONDITIONS CONCLUSTON
(ON-OFF) (OUTPUT)

1. ———Yp———o—o—— 1

2. — o0 o 0

3. e’ 30 0

4, —To Ao 0

Similarly, the numerical equivalents of these permutations
is:

CONDITIONS CONCLUSION
(Inputs) (Output)
1. 1T AND 1 1
2. 1 AND O 0
3. 0 AND 1 0
4, 0 AND O 0

Digital design engineers refer to these table of permuta-
tions as truth tables. The truth table for the AND statement
with two conditions 1s usually presented thusly:

A B ouT

0 1 0
1 0 0
0 0 0

FIGURE 1-1. AND Function Truth Table

It is now possible to derive the truth tables for the OR
and NOT statements, and each is shown in Figures 1-2 and
1-3 respectively.

A B ouT
1 1 1
0 1 1
1 0 1
0 0 0

FIGURE 1-2. OR Function Truth Table

A ouT
1 0
0 1

FIGURE 1-3. NOT Function Truth Table

B. ELECTRONIC LOGIC

A1l three of the basic logic functions can be implemented

by relatively simple transistor circuits. By convention,
each circuit has been assigned a symbol to assist in design-
ing logic systems. The three symbols along with their re-
spective truth tables are shown in Figure 1-4,

A B ouT A B ouT A ouT
0 0 0 0 0 0 0]
0 1 0 0 1 1 1 0
1 0 0 1 0 1 ’
1 1 1 1 1 1

FIGURE 1-4. The Three Main Logic Symbols

The three basic logic circuits can be combined with one an-
other to produce still more logic statement analogies. Two
of these circuit combinations are used so frequently that

they are considered basic logic circuits and have been assign-
ed their own logic symbols and truth tables. These circuits
are the NAND (NOT-AND) and the NOR (NOT-OR). Figure 1-5

shows the logic symbols and truth tables for these circuits.

A A
o ouT o ouT
B B e

A B out A B ouT
0 0 1 0 O 1
0 1 1 0 1 0
1 0 1 1 O 0
1 1 0 1 1 0

FIGURE 1-5, The NAND and NOR Circuits

Three or more logic circuits make a logic system. One of
the most basic logic systems is the EXCLUSIVE-OR circuit
shown in Figure 1-6.

A

B

_AE CARRY

no

OR V ~= SUM

FIGURE 1-6. The EXCLUSIVE-OR Circuit

The EXCLUSIVE-OR circuit can be used to implement logical
functions, but it can also be used to add two input condi-
tions. Since electronic logic circuits utilize only two
numerical units, 0 and 1, they are compatible with the bi-
nary number system, a number system which has only two digits.
For this reason, the EXCLUSIVE-OR circuit is often called a
binary adder.

Various combinations of logic circuits can be used to imple-
ment numerous electronic functions. For example, two NAND
circuits can be connected to form a bistable circuit called

a flip-flop. Since the flip-flop changes state only when

an incoming signal in the form of a pulse arrives, it acts

as a short term memory element. Several flip-flops can be *
cascaded together to form electronic counters and memory
registers.

Other logic circuits can be connected together to form mono-
stable and astable circuits. Monostable circuits occupy

one of two states unless an incoming pulse is received.

They then occupy an opposite state for a brief time and then
resume their normal state. Astable circuits continually
switch back and forth between two states.

C. NUMBER SYSTEMS

Probably because he found it convenient to count with his
fingers, early man devised a number system which consisted

of ten digits. Number systems, however, can be based on any
number of digits. As we have already seen, dual-state e-
lectronic circuits are highly compatible with a two digit
number system, and its digits are termed bits (binary digits).
Systems based upon eight and sixteen are also compatible with
complex electronic logic systems such as computers since

they provide a convenient shorthand method for expressing
lengthy binary numbers.

D. THE BINARY SYSTEM

Like virtually all digital computers, the ALTAIR 8800 per-
forms nearly all operations in binary. A typical binary
number processed by the computer incorporates 8-bits and may
appear as: 10111010. A fixed length binary number such as
this is usually called a word or byte, and computers are us-
ually designed to process and store a fixed number of words
(or bytes).

A binary word like 10111010 appears totally meaningless to
the novice. But since binary utilizes only two digits (bits),
it is actually much simpler than the familiar and tradition-
al decimal system. To see why, let's derive the binary e-
quivalents for the decimal numbers from 0 to 20. We will

do this by simply adding 1 to each successive number until
all the numbers have been derived. Counting in any number
system is governed by one basic rule: Record successive
digits for each count in a column. When the total number

of available digits has been used, begin a new column to

the left of the first and resume counting.

Counting from 0 to 20 in binary is very easy since there

are only two digits (bits). The binary equivalent of the de-
cimal 0 is 0. Similarly, the binary equivalent of the deci-
mal 1 is 1. Since both available bits have now been used,
the binary count must incorporate a new column to form the
binary equivalent for the decimal 2. The result is 10. (In-
cidentally, ignore any resemblance between binary and deci-
mal numbers. Binary 10 is not decimal 10!) The binary e-
quivalent of the decimal number 3 is 11. Both bits have been
used again, so a third column must be started to obtain the
binary equivalent for the decimal number 4 (100). You should
now be able to continue counting and derive all the remain-
ing binary equivalents for the decimal numbers 0 to 20:

DECIMAL BINARY
0 0
1 1
2 10

10

DECIMAL

10
11
12
13
14
15
16
17
18
19

20

BINARY
100
101
110
111

1000
1001
1010
1011
1100
1101
1110
111

10000

10001

10010

10011

10100

A simple procedure can be used to convert a binary number
into its decimal equivalent. Each bit in a binary number
indicates by which power of two the number is to be raised.
The sum of the powers of two gives the decimal equivalent
for the number. For example, consider the binary number
10011:

10011

It

[(1x24) + (0x23) + (0x22) + (1x21) + (1x20)]

[(16) + (0) + (0) + (2) + (1)]

19

n

12

E. THE OCTAL SYSTEM

Since the binary system has only two bits, it doesn't take
long to accumulate a long string of Os and 1s. For ex-
ample, a six-digit decimal number requires 19 bits.

Lengthy binary numbers can be simplified by dividing them

into groups of three bits and assigning a decimal equiva-

lent to each 3-bit group. Since the highest 3-bit binary

number corresponds to the decimal 7, eight combinations of
0s and 1s are possible (0-7).

The basic ALTAIR 8800 accepts a binary input, and any bi-
nary number loaded into the machine can be simplified into
octal format. Of course the octal numbers must be changed
back to binary for entry into the computer, but since only
eight bit patterns are involved the procedure is both sim-
ple and fast. A typical binary instruction for the ALTAIR
8800 is: 11101010. This instruction can be converted to
octal by first dividing the number into groups of three
bits beginning with the least significant bit: 11 101 010.
Mext, assign the decimal equivalent to each of the three
bit patterns:

N 101 010
3 5 2

Therefore, 11 101 010 in binary corresponds to 352 in oc-
tal. To permit rapid binary to octal conversion throughout
the remainder of this manual, most binary numbers will be
presented as groups of three bits.

F. COMPUTER PROGRAMMING

As will become apparent in Part 2, the Central Processing
Unit (CPU) of a computer is essentially a network of logic
circuits and systems whose interconnections or organization
can be changed by the user. The computer can therefore be
thought of as a piece of variable hardware. Implementation
of variations in a computer's hardware is achieved with a
set of programmed instructions called software.

The software instructions for the ALTATR 8800 must be load-
ed into the machine in the form of sequential 8-bit words
called machine Tanquage. This and other more advanced com-
puter languages w1i| Ee discussed Tater.

The basics of computer programming are quite simple. 1In
fact, often the most difficult part of programming is de-
fining the problem you wish to solve with the computer.
Below are listed the three main steps in generating a pro-
gram:

1. Defining the Problem
2. [Establishing an Approach
3. HWriting the Program

Once the problem has been defined, an approach to its so-
Tution can be developed. This step is simplified by making
a diagram which shows the orderly, step-by-step solution

of the problem. Such a diagram is called a flow diagram.
After a flow diagram has been made, the various steps can
be translated into the computer's language. This is the
easiest of the three steps since all you need is a general
understanding of the instructions and a list showing each
instruction and its machine Tanguage equivalent.

The ALTAIR 88200 has an extensive programming capability.
For example, a program can cause data to be transferred be-
tween the computer's memory and the CPU. The program can
even cause the computer to make logical decisions. For
example, if a specified condition is met, the computer can
jump from one place in the program to any other place and
continue program execution at the new place. Frequently
used special purpose programs can be stored in the compu-
ter's memory for later retrieval and use by the main pro-
gram. Such a special purpose program is called a

13

14

subroutine. The ALTAIR 8800 instructions are described in
detail in Part 4 of this manual.

G- A SIMPLE PROGRAM

Assume you wish to use the ALTATR 8800 to add two numbers
located at two different memory locations and store the
result elsewhere in the memory. Of course this is a very
simple problem, but it can be used to illustrate several
basic programming techniques. Here are the steps used in
generating a program to solve this problem:

1. Define the Problem--Add two numbers located in
memory and store the result elsewhere in memory.

2. Establish an Approach--A flow diagram can now be
generated:

Retrieve Number from

First Memory Location

Retrieve Number from

Second Memory Location

Add the Two Numbers

Store the PResult in

a New Memory Location

15

16

3. Write the Program--Translating the flow diagram
into a language or format suitable for use by the compu-
ter may seem complicated at first. However, a general
knowledge of the computer's organization and operation
makes the job simple. 1In this case, the four part flow
diagram translates into five separate instructions:

Retrieve Number from

LDA
First Memory Location ¢
MoV
Retrieve Number from %
LDA
Second Memory Location
W v
Add the Two Numbers ADD
W
Store the Result in ‘5
STA

a New Memory Location

These instructions may seem meaningless now, but their
meaning and application will become much clearer as you
proceed through this manual. For example, the need for

the extra instruction (MOV) will become more obvious after
you learn that the computer must temporarily store the first
number retrieved from memory in a special CPU memory cal-
led a register. The first number is stored in the regis-
ter until it can be added to the second number.

H. COMPUTER LANGUAGES

The software for any computer must be entered into the
machine in the form of binary words called machine lan-
uage. Machine language programs are generally written
w1tE the help of mnemonics which correspond to the bit pat-
terns for various instructions. For example, 10 000 111
is an add instruction for the ALTAIR 8800 and the corre-
sponding mnemonic is ADD A. Obviously the mnemonic ADD A
is much more convenient to remember than its corresponding
machine language bit pattern.

Ultimately, however, the machine language bit pattern for
each instruction must be entered into the computer one

step at a time. Some instructions may require more than

one binary word. For example, an ALTAIF 8800 instruction
which references a memory address such as JMP requires

one word for the actual instruction and two subsequent words
for the memory address.

Machine language programs are normally entered into the
ALTAIR 8800 by means of the front panel switches. A com-
puter terminal can be used to send the mnemonics signal

to the computer where it is converted into machine language
by a special set of instructions (software) called an
assembler.

Even more flexibility is offered by a highly complex soft-
ware package called a compiler which converts higher order
mnemonics into machine language. Higher order mnemonics
are a type of computer language shorthand which automati-
cally replace as many as a dozen or more machine language
instructions with a single, easily recognized mnemonic.
Advanced computer languages such as FORTRAN, BASIC, COBAL,
and others make use of a compiler.

The higher computer languages provide a great deal of sim-
plification when writing computer programs, particularly
those that are lengthy. They are also very easy to remem-
ber. The potential versatility of machine language pro-

18

gramming should not be underestimated, however, and an
excellent way to realize the full potential of a higher
language is to learn to apply machine language.

PART £ ORGANIZATION OF THE ALTAIR 8800

A block diagram showing the organization of the ALTAIR
8600 is shown in Figure 2-1. It is not necessary to un-
derstand the detailed electronic operation of each part of
the computer to make effective use of the machine. How-
ever, a general understanding of each of the various opera-
ting sections is important.

CLOCK

CPU ADDRESS BUS . ‘%H MEMORY

t DATA_BUS 1\

INPUT]ﬁ—-—‘———-i OUTPUT

FIGURE 2-1

19

"¢-¢ NNIIS

weaberqg ndd

INTE

HLDA DBiR SYNC

.I.

WAIT

0z

(1] $2 READY INT RESET
o

TIMING AND

DECIMAL
ARITHMETIC

ACCUMULATOR
(8)

ACCUMULATOR
LATCH
(8)

ALU
(8)

CONTROL

INSTRUCTION
DECODE
AND CONTROL

INSTRUCTION
REGISTER

READ / WRITE
AND
MULTIPLEXER

REGISTER SELECT

TEMPORARY REGISTER

2 | We

REGISTER

L | H

c | 8

STACK POINTER

PROGRAM COUNTER

I FLAG (%)

TEMPORARY
REGISTER
(8)

i/0 BUFFER
AND LATCH

READ / WRITE

INCREMENTER
DECREMENTER

ADDRESS LATCH
(16)

D7 D6 D5 D4 D3 D2 DI

o¢

ADDRESS DRIVERS

(16}

AlS

Al4 AI3 AI2 Al

Al0 A9 AB A7 A6 A5 A4 A3 A2

A. CENTRAL PROCESSING UNIT (CPU)

The Central Processing Unit (CPU) performs all arithmetic
calculations, makes all logical decisions, controls access
to the computer by input and output devices, stores and
retrieves data from the memory, and coordinates the order-
1y execution of a program. The CPU is quite literally

the heart of the computer.

0Of course it is important to remember that the CPU is only
as intelligent as the programmer, for the CPU must be in-
structed in precise terms just how to perform a particular
operation. But since the CPU in the ALTAIR 8800 can exe-
cute a complete instruction cycle in only 2 microseconds*,
the computer can solve a highly complex problem in an in-
credibly brief time. In fact, the ALTATR 8800 can execute
a six instruction addition program approximately 30,000
times in one second.

The compact size and economy of the ALTAIR 8800 is in large
part due to the CPU. Thanks to large scale integrated cir-
cuit techniques (LSI), the CPU used in the ALTATR 8800 is
fabricated on a tiny silicon chip having a surface area

of only a fraction of an inch. This chip, the Intel 8080,
is installed in a protective dual-in-Tine mounting package
having 40 pins.

The CPU is by far the most complex portion of the ALTAIR
8800. A complete block diagram of the CPU is shown in
Figure 2-2, and while it is not necessary to possess a de-
tailed understanding of this diagram it is important to un-
derstand the role of some of the CPU's more important sys-
tems. The interrelationship of each of these systems and
their contribution to the operation of the CPU will then
become more obvious.

1. TIMING AND CONTROL--The timing and Control System re-
ceives timing signals from the clock and distributes them
to the appropriate portions of the CPU in order to insure
coordinated instruction execution. The Timing and Control
System also activates several front panel status indicators
(HOLD, WAIT, INTE, STACK, OUT, IN, INP, MI MENR, HLTA, WO,
INT).

*A microsecond is one millionth of a second.

21

22

2. INSTRUCTION REGISTER--Binary machine language instruc-
tions are temporarily stored in the Instruction Register
for decoding and execution by the CPU.

J. ARITHMETIC--The Arithmetic System performs both binary
and decimal arithmetic. ATl arithmetic operations are
performed by addition. Multiplication is implemented by
repetitive addition. Subtraction and division are imple-
mented by inverse additton.

4. WORKING REGISTERS--The CPU contains seven 8-bit Working
Registers. The most important of these is the Accumulator,
the register into which the results of many operations are
eventually loaded. In addition to acting as a primary
storage point for results of many program operations, nu-
merous arithmetic and logical operations can be performed
with the Accumulator and any specified register or memory
address.

The six remaining registers, which are arranged in pairs

to permit 16-bit operation when necessary, are "scratch-

pad" registers. This simply means they are used to store
temporary data or addresses on a regqular basis and are a-
vailatle for numerous program operations.

Figure 2-3 shows the arrangement and classification of the
seven Working Registers. The additional register adjacent
to the Accumulator, the Status Bit Register, is a special
purpose register used to store the status of certain oper-
ations.

Register Pair B =——> B C
Register Pair D e——p D E
Register Pair H=——»| H L
Register Pair PSW—> * A

*Status Bit Register (See Text)

FIGURE 2-3. The Working Registers

5. STATUS BIT REGISTER--The Status Bit Register is a spe-

cial purpose register which stores the status of five con-
ditions which may or may not be affected by the result of

a data operation. This register contains 8-bit positions,
but only 5-bits are used to store the status information.

The five status bits are:

a. Carry Bit--This bit is set to 1 if a carry has
occurred. The Carry Bit is usually affected by such opera-
tions as addition, subtraction, rotation, and some logical
decisions. The bit is set to O if no carry occurs.

b. Auxiliary Carry Bit--If set to 1, this bit indi-
cates a carry out of bit 3 of a result. 0 indicates no
carry. This status bit is affected by only one instruc-
tion (DAA).

c. Sign Bit--This bit is set to show the sign of a
result. If set to 1, the result is minus; if set to O the
result is plus. The Sign Bit reflects the condition of
the most significant bit in the result (bit 7). This is
because an 8-bit byte can contain up to the decimal equiv-
alent of from -128 to +127 if the most significant bit is
used to indicate the polarity of the result. 23

d. 7Zero Bit--This bit is set to 1 if the result of
certain instructions is zero and reset to 0 if the result
is greater than zero.

e. Parity Bit--Certain operations check the parity
of the result. Parity indicates the odd or even status of
the 1 bits in the result. Thus if there is an even num-
ber of 1 bits, the Parity Bit is set to 1, and if there
is an odd number of 1 bits, the Parity Bit is set to O.

L. PROGRAM COUNTER--The Program Counter is a special 16-
bit register which stores the address of the next program
step to be executed. The Program Counter is automatically
advanced to the next sequential program address upon com-
pletion of a step execution. Sometimes called the P-Coun-
ter, the Program Counter is directly accessible to the
programmer via machine language instructions which imple-
ment JUMP, CALL, and RETURN instructions.

7. STACK POINTER--The Stack Pointer is another special
16-bit register. A section of memory reserved for the tem-
porary storage of data or addresses is called the stack.

24

Data can be pushed onto the stack for temporary storage
and popped out of the stack via several instructions.

The Stack Pointer is used to store the contents of the
Program Counter during the execution of subroutines. A
RETURN instruction transfers the contents of the Stack
Pointer to the Program Counter and sequential execution

of the main program continues. The programmer selects the
location of the stack in memory by loading the Stack Point-
er with the desired memory address via a special instru-
tion (LXI).

The interrelationship of the Working Registers, Program
Counter, Stack Pointer, Arithmetic System, Instruction
Register, and Timing and Control System should now be more
meaningful. The Working Registers incorporate six scratch-
pad registers and an Accumulator into which numerous oper-
ation results are temporarily stored. The Program Counter
causes sequential execution of a program by keeping track
of the memory address of the next instruction to be exe-
cuted. The Timing and Control System supplies timing pul-
ses which coordinate orderly program execution. The Stack
Pointer is used for temporary storage of the data contained
in any register pair. The Stack Pointer also saves the
address in the Program Counter for retrieval after a sub-
routine has been executed. ATl these operations combine

to provide an enormously flexible and versatile CPU.

B. MEMORY

Though the Working Registers, Program Counter, and Stack
Pointer certainly perform memory roles, the CPU does not
contain memory as it is normally defined in a computer
application. The primary memory in a computer is external
to the CPU.

Simple programs can be implemented with a few dozen words

of memory or even less, but more complex applications such
as video processing require more memory. The ALTAIR 8800

is expandable to 65,536 8-bit words of memory.

Access to the memory is always controlled by the CPU.*

16 address lines called the Address Bus connect the CPU

to the Memory. These Tines permit the CPU to input or
output data to or from any memory address. The addresses
are specified by two 8-bit bytes. The CPU processes each
address as two sequential (serial) cycles, each containing
8-parallel bits. Data stored in the Memory is exchanged
between the Memory and CPU via 8 data lines called the
Data Bus. This interconnecticn format permits parallel
operation. Thus, when data is inputted or outputted in

or from Memory by the CPU, it is transmitted as a complete 25
8-bit word.

The basic Memory in the ALTAIR 8800 contains up to eight
256 x 4 bit random access memories (RAMs). However, any
conventional memory can be used in the computer if input
loading on the buss does not exceed 50 TTL loads and if
the buss is driven by standard TTL Toads.

*An exception to this is when the computer is connected to a
Direct Memory Access Controller. DMA takes control of the
address and data lines from the CPU for direct transfers of
blocks of data. These transfers can take place internally
(from one memory location to another) or externally (from
memory to an external device).

