26

C. CLoCK

Orderly execution of a program by the CPU is controlled by
a 2-MHz crystal controlled clock. Crystal control is used
to permit the clock to operate at the maximum permissible
CPU speed. A clock without crystal regulation might occas-
sionally speed up beyond the CPU's capability and program
execution errors would result.

D. INPUT/QUTPUT

The ALTAIR 8800 can be interfaced with a great many external

devices. Generally, these devices provide input informa-
tion to the computer and accept output information from

the computer. The CPU monitors the status of program exe-
cution and Input/Qutput devices and provides the necessary
signals for servicing external devices. The programmer

can instruct the CPU to either ignore or respond to inter-
rupt signals provided by an external device. These inter-
rupt signals, when accepted by the CPU, cause the program
execution to be temporarily halted while the external de-
vice is serviced by the computer. When the external device
has been serviced, the program resumes normal execution.
The ALTATR 8800 will service up to 256 Input and 256 Qutput
devices.

This concludes the description of the organization of the
ALTAIR 8800. The overall operation of the computer as a
powerful and efficient data processing system will become
more apparent in Part 3, a discussion of the operation of
the ALTATR 8800.

21

28

PART 3. OPERATION OF THE ALTAIR 8800

Access to the basic ALTAIR 8800 is achieved via the front
panel, and at first glance the array of 25 toggle switches
and 36 indicator and status LEDs may appear confusing.
Actually, operation of the ALTAIR 8800 is very straight-
forward and most users learn to load a program into the
machine and run it in less than an hour. If you are a ty-
pical user, you will spend far more time developing and
writing programs than actually operating the machine.

This part of the ALTAIR 8800 Operating Manual explains the
purpose and application of the front panel switches and in-
dicator and status LEDs. A sample program is then loaded
into the machine and run. A detailed discussion of the role
and efficient use of memory is included next. Finally,
several operating hints which will help you edit and "debug"
programs are included,

A. THE FRONT PANEL SWITCHES AND LEDs

Though the front panel contains 25 toggle switches and 36
indicator and status LEDs, most routine operations of the
basic ALTAIR 8800 (256 words of memory) can be performed
with only 15 switches and by monitoring only 16 LEDs. The
function of all the switches and LEDs is explained below:

ON-OFF Switch--The ON position applies power to the com-
puter. The OFF position cuts off power and also erases the
contents of the memory.

STOP-RUN Switch--The STOP position stops program execution.
The RUN position implements program execution.

SINGLE STEP Switch--This switch implements a single machine
language instruction each time it is actuated. A single
machine language instruction may require as many as 5 machine
cycles.

EXAMINE-EXAMINE NEXT Switch--The EXAMINE position displays
the contents of any specified memory address previously
Toaded into the DATA/ADDRESS Switches (see below) on the

8 data LEDs. The EXAMINE NEXT position displays the con-
tents of the next sequential memory address. Each time
EXAMINE NEXT 1is actuated, the contents of the next sequen-
tial memory address are displayed.

DEPOSIT-DEPOSIT NEXT Switch--The DEPOSIT position causes
the data byte loaded into the 8 DATA Switches to be load-
ed into the memory address which has been previously desig-
nated. The DEPOSIT NEXT position loads the data byte load-
ed into the 8 DATA Switches into the next sequential memory
address. Each time DEPOSIT NEXT is actuated, the data byte
loaded into the 8 DATA Switches is loaded into the next
sequential memory address. The data byte loaded into the

& DATA Switches can bhe changed before actuating DEPOSIT

or DEPOSIT NEXT.

RESET-CLR Switch--The RESET position sets the Program Counter
to the first memory address (0 000 000 000 000 000). RE-

SET provides a rapid and efficient way to get back to the
first step of a program which begins at the first memory
address. CLR is a CLEAR command for external input/out-

put equipment.

PROTECT-UNPROTECT Switch--The PROTECT position prevents
memory contents from being changed. The UNPROTECT position

28

30

permits the contents of the memory to be altered.

AUX Switches--The basic ALTAIR 8800 includes two auxiliary
switches which are not yet connected to the computer. These
switches will be used in conjunction with peripherals add-
ed to the basic machine.

DATA/ADDRESS Switches--The DATA Switches are those desig-
nated 7-0. The ADDRESS Switches are those desianated 15-0.
A switch whose toggle is in the UP position denotes a 1
bit. A switch whose toggle is in the DOWN position denotes
a 0 bit. 1In the basic ALTAIR 8800 (256 word memory), the
ADDRESS Switches designated 8-15 are not used and should

be set to 0 when an address is being entered.

2. INDICATOR LEDs

(NOTE: When machine is stopped, a glowing LED denotes a

1 bit or an active status of a specified condition; and a
non-glowing LED denotes a 0 bit or inactive status.

While running a program, however, LEDs may appear to give
erroneous indications.)

ADDRESS--The ADDRESS LEDs are those designated A15-A0.
The bit pattern shown on the ADDRESS LEDs denotes the
memory address being examined or loaded with data.

DATA--The DATA LEDs are those designated D7-DO. The bit
pattern shown on the DATA LEDs denotes the data in the
specified memory address.

INTE--An interrupt has been enabled when this LED is
glowing.

PROT--The memory is protected when this LED is glowing.

WAIT--The CPU is in a WAIT state when this LED is glowing.

HLDA--A HOLD has been acknowledged when this LED is
glowing.

3

32

3. STATUS LEDs

(NOTE:

A glowing LED denotes an active status for the

designated condition.)

LED
MEMR

INP

M

ouT

HLTA

STACK

wo

INT

DEFINITION
The memory bus will be used for memory read data.

The address bus containing the address of an
input device. The input data should be placed
on the data bus when the data bus is in the
input mode.

The CPU is processing the first machine cycle
of an instruction,

The address contains the address of an output
device and the data bus will contain the out-
put data when the CPU is ready.

A HALT dinstruction has been executed and ac-
knowledged.

The address bus holds the Stack Peinter's push-
down stack address.

Operation in the current machine cycle will be
a WRITE memory or OUTPUT function. Otherwise,
a READ memory or INPUT operation will occur.

An interrupt request has been acknowledged.

B. LOADING A SAMPLE PROGRAM

In Section G of Part 1, a simple addition program in ma-
chine language mnemonics is presented. The program is de-
signed to retrieve two numbers from memory, add them to-
gether, and store the result in memory. The exact program
in mnemonic form can be written thusly:

0. LDA

1. Mov (A-B)
2. LDA

3. ADD (A+B)
4. STA

5. Jmp

The mnemonics for all 78 of the ALTAIR 8800 instructions
are explained in detail in Part 4 of this manual. For now,
the following definitions will suffice:

1. LDA--Load the accumulator with the contents of
a specified memory address.

2. mov (A-»B)--Move the contents of the accumulator
into register B.

3. ADD (B+A)--Add the contents of register B to the
contents of the accumulator and store the result in the
accumulator.

4. STA--Store the contents of the accumulator in a
specified memory address.

5. JMP--Jump to the first step in the program.*

*Once the computer has executed the program it will search
its memory for something else to do. To maintain control

of the CPU, we can end our sample program with a JMP instruc-
tion (followed by the memory address of the first instruc-
tion). The computer will "jump" back to the first instruc-
tion in the sample program and execute the program over

and over again.

33

34

Notice how precise and specific each of these instructions
is. The computer is instructed exactly how to solve the
problem and where to place the result. Each of these ma-
chine language instructions requires a single byte bit pat-
tern to implement the basic instruction. LDA and STA re-
quire two additional bytes to provide the necessary memory
addresses.

To load this program into the ALTAIR 8800, you must first
determine the memory addresses for the two numbers to be
added, the result, and the program itself. In most cases,
it's more convenient to store a new program by beginning

at the first memory address (0). Therefore, the memory
addresses for the data (the two numbers to be added and the
result) should be placed at any arbitrary addresses higher
in memory. Since the basic ALTATR 8800 has 256 words of
memory, let's select a location for data addresses begin-
ning at memory address 128. The first number to be added
will be located at memory address 128 (10 000 000), the
second at memory address 129 (10 000 001), and the result
at memory address 130 (10 000 010). Now that the memory
addresses have been specified, the program can be converted
into its machine language bit patterns:

MNEMONIC BIT PATTERN EXPLANATION
0. LDA 00 111 010 Load Accumulator with contents
10 000 000 of: Memory address 128 (2 bytes
00 000 000 required for memory addresses)
1. mov (A-»B) 01 000 111 Move Accumulator to Register B
2. LDA 00 111 010 Load Accumulator with contents
10 000 001 of: Memory address 129
/
00 000 000

3. ADD (B+A) 10 000 000 Add Register B to Accumulator

MNEMONIC BIT PATTERN EXPLANATION

4. STA 00 110 010 Store Accumulator contents
10 000 010 at: Memory address 130
00 000 000

5., Jmp 11 000 011 Jump to Memory location 0,
00 000 000
00 000 000

Usually the individual bit patterns of a machine language

program are sequentially numbered to reduce the chance for

error when entering them into the computer. Also, the octal

equivalents of each bit pattern are frequently included

since it is very easy to load octal numbers into the front

panel switches. A1l that is necessary is to remember the

binary / octal equivalents for the decimal numbers 0-7. 35

The resulting program may appear thusly:

STEP MNEMONIC BIT PATTERN OCTAL EQUIVALENT
0. LDA 00 111 010 072

1. (address) 10 000 000 200

2. (address) 00 000 000 000

3. mov (A-»B) 01 000 111 107

4, LDA 00 111 010 072

5. (address) 10 000 001 201

6. (address) 00 000 000 000

7. ADD (B+A) 10 000 000 200

8. STA 00 110 010 062

36

STEP MNEMONIC BIT PATTERN OCTAL EQUIVALENT

9, (address) 10 000 010 202
10. (address) 00 000 000 000
11. JMP 11 000 C11 303
12. (address) 00 000 000 000
13. (address) 00 000 000 000

The program can now be entered into the computer by means
of the front panel switches. To begin loading the pro-
gram at the first memory address (0), actuate the RESET
switch. The Program Counter is now loaded with the first
memory address. The program is then entered into the
DATA/ADDRESS switches 7-0 one step at a time. After

the first step is entered, actuate the DEPOSIT switch to
load the bit pattern into the memory. Then enter the se-
cond step into the DATA/ADDRESS switches and actuate the
DEPOSIT NEXT switch. The bit pattern will be automatically
lToaded into the next sequential memory address (1). Con-
tinue loading the steps into the front panel switches and
actuating DEPOSIT NEXT. The complete program loading pro-
cedure can be summarized as follows:

STEP SWITCHES O-7 - CONTROL SWITCH
RESET
0 00 111 010
DEPOSIT
1 10 000 000

DEPOSIT NEXT
2 00 000 000

DEPOSIT NEXT
3 01 000 11

10

11

12

13

SWITCHES D-7

CONTROL

SWITCH

00

10

00

10

00

10

00

11

00

00

1M

000

000

000

110

000

000

000

000

000

010

001

000

000

010

010

000

011

000

000

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

DEPOSIT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

31

38

The program is now ready to be run, but first it is neces-
sary to store data at each of the two memory addresses which
are to be added together. To load the first address, set
the DATA/ADDRESS switches to 10 000 000 and actuate EXAMINE.
You can now load any desired number into this address by
loading the DATA/ADDRESS switches as appropriate. When the
number has been loaded into the switches, actuate DEPOSIT

to Toad it into the memory. To load the next address, enter
the second number on the DATA/ADDRESS switches and actuate
DEPOSIT NEXT. Since sequential memory addresses were selec-
ted, the number will be automatically loaded into the pro-
per address (10 000 001). If non-sequential memory addres-
ses had been selected, the procedure for finding the first
address would have to be followed (load the address into the
DATA/ADDRESS switches and actuate EXAMINE; then load the
number into the DATA/ADDRESS switches and actuate DEPOSIT).

Now that the two memory addresses referenced in the program
have been loaded with two numbers to be added together, the
program can be run. This is accomplished by simply actuating
the RESET switch and then the RUN switch. Wait a moment and
then actuate the STOP switch. To see the result stored in
memory, actuate the appropriate DATA/ADDRESS switches with
the bit pattern for the address into which the result was
stored (10 000 010) and then actuate the EXAMINE switch.

The result will then be displayed on the DATA LEDs.

To test your ability to load and run this program, try
changing the memory addresses for the numbers to be added
and the result and then load and run the program again.

MNEMONIC

MVIA

MVID

MVIE

LXIH

MVIB

DADH
RAL
JNC

DADD

ACI

DCRB
JNZ

SHLD

JMP

000
001

002
003

004
005

006
007
010

011
012

013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032

033
034

SAMPLE PROGRAM FOR BINARY MULTIPLY

OCTAL
SS CODE

ADDRE

076
002

026
003

036
000

041

000
000

006
010

051
027
322
023
000
031
316
000
005
302
013
000
042
100
000
303

000
000

EXPLANATION

Multiplier to A Register

Multiplicand to D,E Registers

Clear H,L Registers to initialize
Partial Product

Iteration Count to B Register

Shift Partial Product left into Carry

38a
Rotate Multiplier Bit to Carry

Test Multiplier at Carry

Add Multiplicand to Partial Product
if Carry = 1

Decrement Iteration Counter

Check Iterations

Store Answer in Locations 100,101

Restart

C. USING THE MEMORY

By now it is probably apparent that the memory plays a vi-
tal role in the efficient operation of a computer. Higher
language compilers generally include a software package
which automatically keeps track of the various memory ad-
dresses. Machine language operation, however, requires the
programmer to keep track of the memory. Otherwise, valuable
data or program instructions might be accidentally erased

or replaced by other data or instructions.

You can keep track of what is stored in the ALTAIR 8800's
memory by means of a simple technique called memory mapping.
This techmique merely assigns various types of data to cer-
tain blocks of memory reserved for a specific purpose. The
technique effectively organizes the available memory into an
efficient and readily accessible storage medium.

A typical memory map for the ALTAIR 8800 with 256 words of
memory might assign programs to the first 100 words, sub-
routines to the second 100 words, and data to the remaining
56 words. Of course the various blocks of memory can be
modified at will, and the main purpose of memory mapping

is to provide a cohesive organization of the available
memory.

You can make a memory map each time you change the program
in the ALTATR 8800. After the program is written, decide
how much memory space should be reserved for the program
itself, the subroutines (if any), and the data. Then make
a table or chart to record where various items are stored
in the memory. Be sure to update the table when the memory
organization is modified.

39

40

D. MEMORY ADDRESSING

The machine Tanguage instruction set for the ALTATR 8800
provicdes several methods for addressing the memory. They
inclucde direct addressing, register pair addressing, Stack
Pointer addressing, immediate addressing, and stack addres-
sing of subroutines. Each of these addressing methods

will be described below.

1. Direct Addressing--The instruction supplies the speci-
fied memory address in the form of two bytes immediately
following the actual instruction byte.

2. Register Pair Addressing--The contents of a register
pair can contain a memory address. The H and L registers
must be used for this purpose in most instructions. The H
register contains the most significant 8 bits and the L
register the least significant 8 bits (H is high and L is
low). Two instructions (STAX and LDAX) permit the B and

C or D and E register pairs to contain memory addresses.

3. Stack Pointer Addressing--There are only two stack oper-
ations: PUSH and POP. PUSHing data onto the stack causes
two bytes (16 bits) of data to be stored in a special block
of memory reserved by the programmer and called the stack.
POPing data from the stack causes this data to be retrieved.
The PUSH and POP instructions are explained in detail in
Part 4 of this manual. For now it is important to know
that the programmer must reserve the stack location in
memory by Toading a memory address into the Stack Pointer.
This is accomplished by means of the LXI instruction (see
Part 4). The programmer should always make note of the
stack's address on his memory map.

4. Immediate Addressing--Immediate instructions contain
data which is loaded into memory during program loading.
Since the data is Toaded along with the program in a se-
quential fashion, it is stored in the block of memory
reserved for programming by the operator. There is no need
to make any changes to the memory map when loading immedi-
ate data.

5. Stack Addressing of Subroutines--When a subroutine is
CALLed by a program, the address of the next sequential
instruction in the main program is automatically saved by
being PUSHed onto the stack. When the subroutine has been
executed, a RETURN instruction POPs the address from the
stack and the main program continues execution.

E. OPERATING HINTS

As you gain experience in the operation of the ALTAIR 8800,
you will devise methods for improving both the efficiency
of your programs and the operation of the computer. Listed
below are several helpful hints which you will find quite
useful as you learn to operate the machine.

1. Proofreading Programs--To be safe, always proofread a
program after it has been entered into the computer. This
is done by returning to the first address in memory at which
the program begins (actuate RESET if the program begins at
memory location 0; otherwise, set the address on the ADDRESS
switches and actuate EXAMINE), Check the DATA LEDs to make
sure the first program step has been correctly entered.

Then actuate EXAMINE NEXT and check the second step against
the DATA LEDs. Continue proofreading in this fashion until
the entire program has been checked. If an error is found,
simply reenter the correct bit pattern on the DATA switches,
actuate DEPQSIT, and continue proofreading by means of the
EXAMINE NEXT switch.

2. Using NOPs--NOP is an instruction which specifies "No
Operation" and is seemingly of little value. However, by
scattering NOP instructions throughout a complicated pro-
gram, considerable time can be saved if a program error
requiring the addition of a new step or steps is found.

The new instruction or data is simply entered into the pro-
gram in place of the NOP instruction during the program
proofreading. Always be sure to use the appropriate num-
ber of NOPs if it is felt a particular new instruction might
be necessary. For example, if you think it might be ne-
cessary to add an LDA instruction to the program if it fails
to execute properly, use 3 NOPs in a row at the required
location. Three NOPs are required since the LDA instruc-
tion requires three separate bytes.

3. Debugging Programs--Occassionally it will be neccessary
to "debug" a program. The need for debugging occurs when a
program fails to execute properly because of errors (bugs).
Debugging can be enhanced by use of the SINGLE STEP switch.

This switch steps the computer through the program in machine

cycles rather than complete program steps and permits you
to observe the condition of the eight STATUS LEDs. This
procedure will permit you to detect illegal entries, im-
proper program organization, and other programming errors.

41

42

PART Y. ALTAIR 8800 INSTRUCTION SET

The ALTAIR 8800 has 78 basic machine language instruc-
tions. Since many of the instructions can be modified to
affect different registers or register pairs, more than
200 variances of the basic instructions are possible.

A detailed description of the ALTAIR 8800 instruction set
is provided in the remainder of this operating manual.
For the purpose of this description, the 78 basic machine
language instructions have been grouped into seven major
subdivisions:

A. Command Instructions

B. Single Register Instructions

C. Register Pair Instructions

D. Accumulator Instructions

E. Data Transfer Instructions

F. Immediate Instructions

G. Branching Instructions
Each instruction is presented as a standardized mnemonic
or machine language code. Instructions may occupy from
one to three sequential (serial) bytes, and the appropriate
bit patterns are included. A condensed summary of the com-

plete instruction set showing the mnemonics and instruc-
tions in both binary and octal is included as an Appendix.

A. COMMAND INSTRUCTIONS

The ALTAIR 8800 has nine special purpose command instruc-
tions which are used to service the remaining instructions.
These special purpose instructions occupy four catagories:
Input/Output Instructions (IN, OUT), Interrupt Instructions
(EI, DI, HLT, RST), Carry Bit Instructions (STC, CMC), and
the No Operation Instruction (NOP).

1. INPUT/OUTPUT INSTRUCTIONS

There are two Input/Output Instructions and each occupies
two bytes. The first byte is the instruction, and the se-
cond byte is the Input/Output device number.

TN (INPUT) 11 011 011 (Byte 1)
(Device No.) (Byte 2)

Operation: An 8-bit data byte is loaded from the specified
external device into the Accumulator.

Status Bits: Unaffected.

Example: Assume an input device contains the following
data byte: 00 001 000. Implementation of the IN instruc-
tion (including device number) will cause the data byte

to replace the contents of the Accumulator.

ouT (ouTPUT) 11 010 011 (Byte 1)
(Device No.) (Byte 2)

Operation: An 8-bit data byte is loaded from the Accumu-
lator into the specified output device.

VStatus Bits: Unaffected.

[xample: Assume the Accumulator contains the following

data byte: 00 001 000. Implementation of the OUT instruc-
tion (plus device number) will cause the data byte to be sent
to the specified external device.

43

44

2. INTERRUPT INSTRUCTIONS

There are two specific Interrupt instructions (EI and DI)
and two auxiliary Interrupt instructions. Interrupt in-
structions permit implementation of a program by a compu-
ter to be temporarily interrupted so that input/output in-
terfacing may take place. For example, interrupts may be
utilized by a computer's output device while an input device
is entering data or a program,

EI (ENABLE INTERRUPTS) 11 111 011 (Byte 1)

Operation: Implementation of the EI instruction sets the
interrupt flip-flop. This alerts the computer to the pre-
sence of interrupts and causes it to respond accordingly.

Status Bits: Unaffected.
DI (DISABLE INTERRUPTS) 11 110 011 (Byte 1)

Operation: Implementation of the DI instruction resets the
interrupt flip-flop. This causes the computer to ignore
any subsequent interrupt signals.

Status Bits: Unaffected.
HLT (HALT INSTRUCTION) 01 110 110 (Byte 1)

Operation: Implementation of the HLT instruction steps the
Program Counter to the next instruction address and stops
the computer until an interrupt occurs. The HLT instruc-
tion should not normally be implemented when a DI instruc-
tion has been executed. Since the DI instruction causes the
computer to ignore interrupts, the computer will not oper-
ate again until the main power switch is turned off and then
back on.

Status Bits: Unaffected.
RST (RESTART INSTRUCTION) 11 (esp) 111 (Byte 1)

Operation: The data byte in the Program Counter is pushed
onto the stack. This provides an address for subsequent
use by a RETURN instruction. Program execution then con-
tinues at memory address: 00 000 000 00 (exp) 000 where
exp ranges from 000 to 111,

The RST instruction is normally used to service interrupts.
The external device may cause a RST instruction to be ex-
ecuted during an interrupt. Implementation of RST then
calls a special purpose subroutine which is stored in up
to eight 8-bit bytes in the lower 64 words of memory. A
RETURN instruction is included to return the computer to
the original program.

Status Bits: Unaffected.

Example: Assume the following RST instruction is present:
11 001 111, Implementation of the instruction will cause
the Program Counter data byte to be pushed onto the stack.
The program will then continue execution at the subroutine
lTocated at memory address: 00 000 000 00 001 000. Upon
completion of the subroutine, a RETURN instruction will
return the computer to the next step in the main program.

3. CARRY BIT INSTRUCTIONS

There are two instructions which can be used to directly
modify the status of the Carry Bit. Each instruction re-
quires one 8-bit byte.

mc (COMPLEMENT CARRY) 00 111 111 (Byte 1)
Operation: The Carry Bit is complemented. If it is ini-
tially 0, it is set to 1. If it is initially 1, it is re-
set to 0.

Status Bit Affected: Carry.

STC (SET CARRY) 00 110 1N (Byte 1)
Operation: The Carry Bit is set to 1.

Status Bit Affected: Carry.

4. NO OPERATION INSTRUCTION

There is one NO OPERATION instruction. It occupies a single

8-bit byte.
NOP (NO OPERATION) 00 000 000 (Byte 1)

Operation: No operation occurs, and the Program Counter

45

46

proceeds to the next sequential instruction.
cution then continues.

Status Bits: Unaffected.

Program exe-

B. SINGLE REGISTER INSTRUCTIONS

The ALTAIR 8800 has four single register instructions.
Each instruction occupies a single byte. Two of the in-
structions, INR and DCR, have eight variances each. The
variances are specified according to any desired regis-
ter, and the following register bit patterns apply:

Register Bit Pattern
B 000
C 001
D 010
E 011
H 100
L 101
>: Memory Reference M 110

41
A 111

If Memory Reference M (110) is specified in the instruc-
tion byte, the memory byte addressed by the contents of the
H and L registers is processed. The H register contains
the most significant 8 bits of the memory address and the

L register contains the least significant 8 bits of the
address.

INR (INCREMENT REGISTER OR MEMORY) 00 (reg) 100 (Byte 1)
Operation: The specified byte is incremented by one.

Status Bits Affected: Zero, Sign, Parity, and Auxiliary Carry.
Example: Assume the following instruction is present:

00 000 100. According to the table of register bit pat-

terns given above, the byte in register B is to be incre-
mented by 1. If the initial byte is 00 000 000, the incre-
mented byte will be 00 000 001.

DCR (DECREMENT REGISTER OR MEMORY) 00 (reg) 101 (Byte 1)

48

Operation: The specified byte is decremented by one.

Status Bits Affected: Zero, Sign, Parity, and Auxiliary
Carry.

Example: Assume the following instruction is present:

00 001 101. According to the table of register bit pat-
terns given above, the byte in register C is to be decre-
mented by 1. If the initial byte is 00 000 001, the decre-
mented byte will be 00 000 000.

MA (COMPLEMENT ACCUMULATOR) 00 101 111 (Byte 1)

Operation: Each bit in the accumulator is complemented
(1s become 0s and Os become 1s).

Status Bits: Unaffected.

Example: Assume the accumulator byte is 11 001 100. The
instruction CMA will complement each bit in the accumula-
tor byte as shown below:

11 001 100 Accumulator

00 110 OM Complemented Accumulator

DAA (DECIMAL ADJUST ACCUMULATOR) 00 100 111 (Byte 1)

Operation: The 8-bit accumulator byte is converted into
two 4-bit BCD (binary-coded-decimal) numbers. The instruc-
tion affected by the Auxiliary Carry Bit.

The DAA instruction performs two operations:

1. If the Teast significant 4 bits in the accumula-
tor byte (bits 0-3) represent a BCD digit greater than 9
or if the Auxiliary Carry Bit is set to 1, the four bits are
automatically incremented by 6. 1If not, the accumulator
is unaffected.

2. If the most significant 4 bits in the accumulator
byte (bits 4-7) represent a BCD digit greater than 9 or if
the Carry Bit is set to 1 after the previous operation,
the four bits are automatically incremented by 6. If not,
the accumulator is unaffected.

Status Bits Affected: Zero, Sign, Parity, Carry, and Aux-
iliary Carry.

Example: Assume the accumulator byte is 10 100 100. The
DAA instruction will automatically consider the byte as two
4-bit bytes: 1010 0100. Since the value of the least
significant 4 bits is Tess than 9, the accumulator is ini-
tially unaffected. The value of the most significant 4 bits
is greater than 9, however, so the 4 bits are incremented

by 6 to give 1 0000, The most significant bit sets the

Carry Bit to 1, and the accumulator now contains: 00 000 100.

49

