50

C. REGISTER PAIR INSTRUCTIONS

The ALTAIR 8800 has eight register pair instructions.

Each instruction occupies a single byte. Five of the in-
structions, PUSH, POP, DAD, INX, and DCX, have four varian-
ces each., The variances are specified according to any
desired register pair, and the following register pair bit
patterns apply:

Register Pair Bit Pattern
B and C 00
D and E 01
H and L 10
Flags and A 11
PUSH (PUSH DATA ONTO STACK) 11 (rp)0 101 (Byte 1)

Operation: The contents of the specified register pair

(rp) are stored in two bytes of memory at an address indi-
cated by the Stack Pointer. The contents of the first re-
gister are PUSHed into the address one less than the address
in the Stack Pointer. The contents of the second register
are PUSHed into the address two less than the address in

the Stack Pointer.

If the Status Bit Register and Accumulator (register pair
PSW) pair is specified, the first byte PUSHed into memory
is the Status Bit Register. This byte has the following
format :

Bit Position Contents
7 Sign Bit
6 Zero Bit
5 0
4 Auxiliary Carry Bit
3 C

2 Parity Bit
1 1

Bit Position Contents
0 Carry Bit

For example, if the Carry Bit is set to 1 and all remain-
ing status bits are reset to 0, the Status Bit Register
will contain the following byte: 00 000 011.

After the PUSH instruction is implemented, the Stack Pointer
1s automatically decremented by two.

Status Bits: Unaffected.

Example: Assume PUSH BC is implemented. The instruction
byte will have the following format: 11 000 101. The
contents of register pair BC will be stored in memory thusly:
B will be stored at the address in the Stack Pointer less
one; C will be stored at the address in the Stack Pointer
less two. The Stack Pointer will then be decremented by two.

POP (POP DATA OFF STACK) 11 (rp)0 001 (Byte 1)

Operation: The contents of the specified register pair

(rp) are retrieved from the two bytes of memory at an address
indicated by the Stack Pointer. The contents of the memory
byte at the Stack Pointer address are loaded into the second
register of the pair, and the contents of the byte at the
Stack Pointer address plus one are loaded into the first
register of the pair.

If the Status Bit Register and Accumulator (register pair
PSW) pair is specified, the contents of the byte at the
Stack Pointer address plus one are used to set or reset the
status bits according to the format provided in the des-
cription of the PUSH instruction.

After the POP instruction is implemented, the Stack Pointer
is automatically incremented by two.

Status Bits Affected: None unless register pair PSW is
specified.

Example: The inverse of the example provided under the PUSH
instruction will illustrate operation of the POP instruc-
tion.

3

DAD (DOUBLE ADD) 00 (rp)1 001 (Byte 1)

Operation: The 16-bit number formed by the two bytes in the
specified register pair (rp) is added to the 16-bit num-

ber formed by the two bytes in the H and L registers. The
result is stored in the H and L register pair.

Status Bits Affected: Carry.

Example: Assume the 16-bit number formed by the two bytes
in register pair BC is 00 101 111 01 111 111, Assume the
contents of the H and L register pair form the 16-bit num-
ber 01 100 000 00 100 101. The instruction DAD BC (00
001 001) will add the two numbers and store the result in
the H and L register pair. The result of the addition is:
10 001 111 10 100 100. Since no carry occurred, the Carry
Bit is reset to O.

INX (INCREMENT REGISTER PAIR) 00 (rp)0 011 (Byte 1)

Operation: The 16-bit number formed by the two bytes in the
specified register pair (rp) is incremented by one.

Status Bits: Unaffected.

Example: Assume the INX instruction 00 100 011 is present.
According to the table of register pair bit patterns, the
16-bit number formed by the two bytes in the H and L regis-
ter pair will be incremented by one. If the initial 16-
bit number is 10 001 111 10 100 100, the new 16-bit number
will be 10 001 111 10 100 101.

DCX (DECREMENT REGISTER PAIR) 00 (rp)1 011 (Byte 1)

Operation: The 16-bit number formed by the two bytes in
the specified register pair is decremented by one,

Status Bits: Unaffected.

Example: Assume the DCX instruction 00 101 011 is present.
According to the table of register pair bit patterns, the
16-bit number formed by the two bytes in the H and L re-
gister pair will be decremented by one. If the initial .
16-bit number is 10 001 111 10 100 101, the new 16-bit number
will be 10 001 111 10 100 100.

XCHG (EXCHANGE REGISTERS) 11 101 011 (Byte 1)

Operation: The 16-bit number formed by the contents of
the H and L registers is exchanged with the 16-bit number
formed by the contents of the D and E registers.

Status Bits: Unaffected.

Example: Assume the H register byte is 10 001 111 and

the L register byte is 10 000 011. Assume the D and E
register bytes are both (0 0G0 000. Implementation of the
XCHG instruction will exchange the contents of the two re-
gister pairs so that the H and L register bytes are both

00 000 000 and the D and E register bytes are, respectively,
10 001 111 and 10 000 017,

XTHL (EXCHANGE STACK) 11 100 011 (Byte 1)

Operation: The byte stored in the L register is exchanged
with the memory byte addressed by the Stack Pointer. The
byte stored in the H register is exchanged with the memory
byte at the address one greater than that addressed by the
Stack Pointer.

Status Bits: Unaffected.

Example: The example provided under the XCHG instruction
is similar to the operation which occurs when the XTHL in-
struction is implemented.

SPHL (LOAD SP FROM H AND L) 11 111 001 (Byte 1)

Operation: The 16-bit contents of the H and L registers
replace the contents of the Stack Pointer without affect-
ing the contents of the H and L registers.

Example: Assume the H register byte is 10 001 111 and the
L register byte is 10 000 011. Assume the Stack Pointer
address is 00 001 100 01 111 111, Implementation of the
SPHL instruction will load the Stack Pointer with: 10 001
11T 10 000 011. The contents of the H and L registers will
remain unchanged.

83

54

D. ROTATE ACCUMULATOR INSTRUCTIONS

This is a special set of four instructions which apply only
to the ALTATR 8800's accumulator. Only one byte of instruc-
tion is required, and no memory or register variances apply.

RLC (ROTATE ACCUMULATOR LEFT) 00 000 111 (Byte 1)

Operation: The accumulator byte is rotated one bit posi-
tion to the left. The 7 bit position now occupies the 0
bit position and the Carry Bit is set with the value of
the 7 bit before rotation,

Status Bits Affected: Carry.

Example: Assume the accumulator byte is 10 001 000 and the
RLC instruction is present. The Carry Bit is set to equal
the value of the accumulator byte's 7 bit (1), and the con-
tents of the accumulator are rotated one bit position to
the left. The 7 bit now occupies the 0 bit: 00 010 001.

RRC (ROTATE ACCUMULATOR RIGHT) 00 001 111 (Byte 1)

Operation: The accumulator byte is rotated one bit posi-
tion to the right. The O bit position now occupies the 7
bit position and the Carry Bit is set with the value of the
0 bit before rotation.

Status Bits Affected: Carry.

Example: Assume the accumulator byte is 10 001 000 and the
RRC instruction is present. The Carry Bit is set equal

to the value of the accumulator byte's 0 bit (0), and the
contents of the accumulator are rotated one bit position

to the right. The 0 bit now occupies the 7 bit: 01 000 100,

RAL (ROTATE ACCUMULATOR LEFT THROUGH CARRY) 00 010 11

Operation: The accumulator byte is rotated one bit posi-
tion to the left through the Carry Bit. The 7 bit posi-
tion then occupies the Carry Bit and the Carry Bit occupies
the 0 bit position.

Status Bits Affected: Carry.

Example: Assume the accumulator byte is 10 00] 000, the
Carry Bit is 1, and the RAL instruction is present. The
contents of the accumulator are rotated one bit left through

the Carry Bit. The 7 bit now occupies the Carry Bit (1)
and the Carry Bit now occupies the 0 bit: 00 010 001.

RAR (ROTATE ACCUMULATOR RIGHT THROUGH CARRY) 00 011 111

Operation: The accumulator byte is rotated one bit position
to the right through the Carry Bit. The 0 bit position

now occupies the Carry Bit and the Carry Bit occupies the

7 bit position.

Status Bits Affected: Carry.

Example: Assume the accumulator byte is 10 001 000, the
Carry Bit is 1, and the RAR instruction is present. The
contents of the accumulator are rotated one bit position
right through the Carry Bit. The 0 bit now occupies the
Carry Bit, and the Carry Bit now occupies the 7 bit:

11 000 100.

35

36

E. DATA TRANSFER INSTRUCTIONS

Data can be conveniently transferred between registers or
between the memory and registers of the ALTAIR 8800. Cer-
tain of these operations are direct data transfers and no
other operation is involved. For example, the MOV instruc-
tion causes a byte of data to be transferred from one regis-
ter (the source register) to another register (the destin-
ation register]. Other data transfers are accompanied by

an arithmetic or logical operation. For example, the ADD
instruction adds the contents of a specified register to

the contents of the accumulator.

Still another class of data transfer instructions concerns
only the accumulator and the H and L register pair. For
example, the STA instruction causes the contents of the
accumulator to replace the byte of data stored at a speci-
fied memory address.

This section describes fifteen separate data transfer in-
structions, but it is important to note that many other
instructions also involve the transfer of data (e.g. PUSH,
POP, DAD, XCHG, XTHL, SPHL, etc.). However, it is more
appropriate to the efficient organization of this operating
manual to describe these instructions elsewhere.

The data transfer instructions described in this section
are grouped into three subdivisions. The first subdivi-
sion is Data Transfers (MOV, STAX, and LDAX). The second
is Register/Memory to Accumulator Transfers (ADD, ADC, SUB,
SBB, ANA, XRA, ORA, and CMP). And the third is Direct
Addressing Transfers (STA, LDA, SHLD, and LHLD).

1. DATA TRANSFER INSTRUCTIONS

There are three data transfer instructions and each is un-
conditional. Each of the three instructions has at least
two variances. The variances are determined by register or
memory addresses which are specified by the programmer.

MOV (MOVE DATA) 01 DDD SSS (Byte 1)

Operation: The contents of SSS (the source register) are
moved to DDD (the destination register). The contents of
SSS remain unchanged. The following bit patterns for the
source and destination registers apply:

Register Bit Pattern

B 000
C 001
D 010
E 011
H 100
L 101
Memory Reference M 110
A _ 111

The source and destination registers cannot both equal 110.
Status Bits: Unaffected.

Example: Assume it is necessary to transfer the contents

of register E to the accumulator. By referring to the re- o
gister bit pattern table provided above, an appropriate MOV

instruction can be formulated: 01 111 011,

STAX (STORE ACCUMULATOR) 00 0X0 010 (Byte 1)

Operation: The contents of the accumulator are stored in

a memory address specified by registers B and C or registers
D and E. Registers B and C are specified by a 0 at the

4 bit position (X). Registers D and E are specified by a

1 at the 4 bit position (X).

Status Bits: Unaffected.

Example: Assume it is necessary to store the contents of
the accumulator at a memory address specified by registers
D and E, The appropriate STAX instruction is: 00 010 010,

LDAX (LOAD ACCUMULATOR) 00 0X1 010 (Byte 1)

Operation: The contents of the memory address specified by
registers B and C or by registers D and E replace the con-
tents of the accumulator. Registers B and C are specified
by a 0 at the 4 bit position (X). Registers D and E are
specified by a 1 at the 4 bit position (X).

8

Status Bits: Unaffected.

Example: Assume it is necessary to Toad the accumulator
with the contents of a memory address specified by registers
B and C. The appropriate LDAX instruction is: 00 00 010.

2. REGISTER/MEMORY TO ACCUMULATOR TRANSFERS

There are eight Register/Memory to Accumulator Transfers
and each is unconditional. Each of the eight instructions
has eight variances determined by registers specified by
the programmer. The following bit patterns for each of
the registers apply:

Register Bit Pattern
B 000
C 001
D ’ 010
E 011
H 100
L 101
Memory Address M 110
A 111

Four of the instructions involve arithmetic (add or sub-
tract) operations. The remaining four involve logical op-
erations.

ADD (ADD REGISTER/ACCUMULATOR TO MEMORY) 10 000(reg) (Byte 1)

Operation: The contents of the specified register (reg)
are added to the contents of the accumulator,

Status Bits Affected: Carry, Sign, Zero, Parity, and
Auxiliary Carry.

Example: Assume it is necessary to add the contents of
register B to the accumulator. Referring to the register
bit pattern table given above, the appropriate instruction

ijs: 10 000 000. If the data bytes at register B and the
accumulator are 11 010 100 and 01 100 010 respectively, the
following addition will be performed:

11 0710 100 Register B Byte

01 100 010 Accumulator Byte

100 110 110 New Accumulator Byte

Since the new accumulator byte has nine bits, the Carry Bit
will be set to 1 to indicate a carry has occurred.

ADC (ADD REGISTER/MEMORY AND CARRY TO ACCUMULATOR) 10 001 (reg)

Operation: The contents of the specified register (reg) and
the content of the Carry Bit are added to the accumulator.

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil-
iary Carry.

Example: Assume it is necessary to add the contents of regis-
ter C and the content of the Carry Bit to the accumulator.
Referring to the register bit pattern table given above, the
appropriate instruction is: 10 001 001. If the data bytes

at register C and the accumulator are 00 100 011 and 01 011
100 and the Carry Bit is 1, the following addition will be
performed:

00 100 011 Register C Byte
01 011 100 Accumulator Byte

1 Carry Bit

10 000 000 New Accumulator Byte

If the new accumulator byte had nine bits, the extra bit would
set the Carry Bit to 1.

SuUB (SUBTRACT REGISTER/MEMORY FROM ACCUMULATOR) 10 010 (reg)

Operation: The contents of the specified register are sub-
tracted from the contents of the accumulator. The ALTAIR
8800 achieves subtraction by means of a simple addition pro-
cess called two's complement arithmetic. If there are only

a8

60

eight bits in the result, no carry bit is present. This means
a borrow occurred, and the Carry Bit is set to 1. Note that
this operation is the inverse of what occurs in an ADD instruc-
tion.

Status Bits Affected: Carry Sign, Zero, Parity, and Auxil-
iary Carry.

Example: Assume it is necessary to clear the accumulator
of its contents. An efficient way to achieve this require-
ment is to implement a SUB A instruction (10 010 111) where
A specifies the accumulator variance of the SUB instruction.
Implementation of this instruction will cause the contents
of the accumulator to be subtracted from itself.

SBB (SUBTRACT REGISTER/MEMORY FROM ACCUMULATOR WITH BORROW)
10 011 (reg) (Byte 1)

Operation: The content of the Carry Bit is added to the con-
tents of the specified register and the result is then sub-
tracted from the accumulator using two's complement arith-
metic.

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil-
iary Carry.

Example: Assume that the SBB instruction is implemented for
the B variance (SBB B). The contents of register B will be
added to the carry bit, and the result will then be subtracted
from the accumulator. Status bits will be set or reset as
appropriate.

ANA (LOGICAL AND REGISTER/MEMORY WITH ACCUMULATOR) 10 100 (reg)

Operation: The content of the specified register is logically
ANDed with the contents of the accumulator. The Carry Bit is
reset to O.

Status Bits Affected: Carry, Zero, Sign, and Parity.

Example: Assume the content of register L is 10 001 100 and
the content of the accumulator is 10 000 101. An ANA instruc-
tion will then cause the contents of the two registers to be
ANDed with one another bit-by-bit. Since the logical ANDing
of two bits is 1 only if both bits are 1, the following pro-
cedure occurs:

10 001 100 Register L
10 000 101 Accumulator

10 000 100 Register L AND Accumulator
XRA (LOGICAL EXCLUSIVE-OR REGISTER/MEMORY WITH ACCUMULATOR)
10 101 (req)

Operation: The content of the specified register is logically
EXCLUSIVE ORed with the contents of the accumulator. The Carry
Bit is reset to 0.

Status Bits Affected: Carry, Sign, Zero, and Parity.

Example: Since the EXCLUSIVE-ORing of two bits is 1 only
if the values of the bits are different, the XRA instruction
can be used to clear the accumulator to 0. This function is
implemented by means of the instruction XRA and the variance
A. The resulting statement is 10 101 111 (see the table of
register bit patterns given above).

61
The XRA instruction can also be used to monitor the status
of individual bits in a byte which has been designated a con-
dition byte. For example, assume a byte has been designated
to record eight separate true-false conditions wherein a 1 is
true and a 0 is false. 1In order to check whether or not any
of the conditions have changed, the original data byte can
be moved to the accumulator and EXCLUSIVE-ORed with the updated
data byte. Conditions which have not changed will produce a
0 bit and conditions which have changed will produce a 1 bit.

ORA (LOGICAL OR REGISTER/MEMORY WITH ACCUMULATOR) 10 110 (reg)

Operation: The content of the specified register is logi-
cally ORed with the content of the accumulator. The Carry Bit
is reset to zero.

Status Bits Affected: Carry, Zero, Sign, and Parity.
Example: Since the ORing of two bits is 0 only if the value

of each bit is 0, the ORA instruction can be used to set a
group of bits to a series of 1s.

62

P (COMPARE REGISTER/MEMORY WITH ACCUMULATOR) 10 1171 (reg)

Operation: The content of the specified register is compared
with the content of the accumulator by subtracting the for-
mer from the latter. The contents of the register and accu-
mulator are unaffected by this operation, and the status bits
are set or reset as appropriate.

Status Bits Affected: Carry, Sign, Zero, and Parity (Note:
The sense of the Carry Bit is reversed if one byte is plus
and the other is minus).

Example: The CMP instruction is useful in determining when
the content of any particular register equals that of the
accumulator. If the two bytes are equal, the subtraction will
give a 0 result, and the Zero Status Bit will be set to 1.

If the register contents are greater than the accumulator
contents, the Carry Bit will be set to 1 since a subtraction
has occurred. If the register contents are less than the ac-
cumulator contents, the Carry Bit will be reset to 0.

3. DIRECT ADDRESSING INSTRUCTIONS

The four instructions described in this section are used to
store the contents of the accumulator and the H and L regis-
ters in the memory or to Toad the accumulator and H and L —
registers with data from the memory. Al1 four instructions

require three bytes. The first byte is the specific instruc-
tion, and the second and third bytes provide the memory address.

STA (STORE ACCUMULATOR DIRECT) 00 110 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: The contents of the accumulator are stored in the
memory at the address specified in bytes 2 and 3.

Status Bits: Unaffected.

Example: Assume the accumulator byte is 00 010 110 and a
STA instruction is present with the following memory address:

01 000 000 (Byte 2) -
01 000 001 (Byte 3)

The accumulator byte will then be stored at this memory
address.

LDA (LOAD ACCUMULATOR DIRECT) 00 111 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: The accumulator is loaded with the contents of
the byte at the memory address given by bytes 2 and 3 of the
instruction.

Status Bits: Unaffected.

Example: The inverse of the example given in the STA instruc-
tion will illustrate operation of the LDA instruction.

SHLD (STORE H AND L DIRECT) C0 100 010 (Byte 1)
(Low Address) (Byte 2)

(High Address) (Byte 3)

Operation: The contents of the L register are stored in the
memory at the address specified in bytes 2 and 3. The contents
of the H register are stored in the memory at the next higher
address.

Status Bits: Unaffected.
Example: Assume the L register byte is 00 101 100, the H
register byte is 00 101 111, and an SHLD instruction is pre-
sent with the following address:

01 000 101 (Byte 2)

01 110 101 (Byte 3)

The L register byte will then be stored at this memory address,
and the H register byte will be stored at the next highest
address.

LHLD (LOAD H AND L DIRECT) 00 101 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

63

64

Operation: The L register is loaded with the contents of the
byte at the memory address given by bytes 2 and 3. The H
register is loaded with the contents of the byte at the next
higher memory address.

Status Bits: Unaffected.

Example: The inverse of the example given in the SHLD in-
struction will illustrate operation of the LHLD instruction.

F. IMMEDIATE INSTRUCTIONS

The ALTAIR 8800 has ten immediate instructions. These instruc-
tions cause the computer to process one or two bytes of data
which form a part of the instruction. Immediate instructions
are available to load two bytes of data into a specified re-
gister pair, move one byte of data into a specified regis-

ter or memory address, and to perform arithmetic and Togical
operations with the contents of the accumulator and one byte
of immediate data.

A typical byte of immediate data is a mathematical constant
such as pi. Immediate data can also be a number or quantity
specified by the programmer such as an actual or projected
inventory count. For example, a program utilizing one or more
immediate instructions will permit the computer to compare
the actual inventory of a particular product with the desired
inventory. At any inventory count specified in the program,
the computer can notify the programmer or operator of the

need to reorder.

LXI (LOAD REGISTER PAIR IMMEDIATE) 00 (rp)0 001 (Byte 1)
(Data) (Byte 2)65
(Data) (Byte 3)

Operation: Two bytes of immediate data are loaded into the
register pair specified rp in byte 1 of the instruction.

The first byte of data (the least significant 8 bits) is loaded
into the second register of the specified pair, and the

second byte of data (the most significant 8 bits) is loaded
into the first register of the specified pair. This pro-
cedure is reversed if the Stack Pointer is the specified regis-
ter pair. The bit patterns for the register pairs are as

follows:
00 Registers B and C
01 Registers D and E
10 Registers H and L
11 Stack Pointer

Status Bits: Unaffected.

66

Example: The following LXI instruction is inputed to the

computer:
00 010 001 (Byte 1)
01 111 1N (Byte 2)
01 111 110 (Byte 3)

Bit positions 4 and 5 of byte 1 specify that the data in bytes
2 and 3 is to be loaded into registers D and E. Byte 2 is
loaded into D and byte 3 is loaded into E.

MVI (MOVE IMMEDIATE DATA) 00 (reg)110 (Byte 1)
(Data) (Byte 2)
Operation: One byte of immediate data is moved into the spe-

cified register or memory byte. The following register bit
patterns apply:

Register Bit Pattern
B 000
C 001
D 010 -
E 011
H 100
L 101
Memory Address M 110
A 1

Status Bits: Unaffected.

Example: The following MVI instruction is inputed to the com-
puter:

00 011 110 (Byte 1)
11 111 111 (Byte 2)

The immediate data in byte 2 is moved into register E.
ADI (ADD IMMEDIATE TO ACCUMULATOR) 11 60O 110
(Data)

Operation: The immediate data in byte 2 is added to the con-
tents of the accumulator.

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil-
iary Carry.

Example: Assume the accumulator byte is 11 110 000 and the
ADI instruction is present. The immediate data in the ADI
instruction is 10 000 000. Implementation of the ADI in-
struction will leave 01 110 000 in the accumulator and the
Carry Bit will be set to 1. A1l other status bits will be
reset.

ACT (ADD IMMEDIATE AND CARRY TO ACCUMULATOR) 11 001 110
(Data)

Operation: The data in byte 2 and the content of the Carry
Bit are added to the contents of the accumulator.

Status Bits Affected: Carry, Sign, Zero, Parity, and Aux-
iliary Carry.

Example: Assume the accumulator byte is 11 110 000, the Carry
Bit is set to 1, and the ACI instruction is present. The
immediate data in the ACI instruction is 00 101 100. Imple-
mentation of the ACI instruction will leave the sum 00 011 101
in the accumulator and both the Carry and Parity Bits will be
set to 1. The remaining status bits will be reset to O.

SUut (SUBTRACT IMMEDIATE FROM ACCUMULATOR) 11 010 110
(Data)

Operation: The data in byte 2 is subtracted from the con-
tents of the accumulator using two's complement arithmetic.
Since the ALTAIE 8800 implements subtraction by means of addi-
tion, the Carry Bit is set to 1 if no carry occurred since
this means a borrow occurred. If a borrow did not occur,

a carry did occur, and the Carry Bit is reset to 0. Note
that this operation is the reverse of what occurs in an ADI

or ACI instruction.

(Byte 1)
(Byte 2)

(Byte
(Byte

(Byte
(Byte

1)
2)

1)

67

68

Status Bits Affected: Carry, Sign, Zero, Parity, and Auxil-
iary Carry.

Example: Assume it is necessary to subtract 00 000 100 from
the accumulator. The resulting instruction would be as fol-
lows:

11 010 110 (Byte 1)
00 000 100 (Byte 2)

If the accumulator byte is 00 001 010, implementation of the
SUI instruction will leave 00 000 110 in the accumulator.
Since this is a subtraction operation and no carry is present,
a borrow occurred and the Carry Bit is set to 1. The Parity
Bit is also set to 1, and the remaining status bits are reset
to 0.

SBI (SUBTRACT IMMEDIATE PLUS CARRY FROM ACCUMULATOR) 11 011 110
(Data)

Operation: The data in byte 2 is added to the content of the
Carry Bit and the result is subtracted from the accumulator
using two's complement arithmetic.

Status Bits Affected: Carry, Sign, Zero, Parity, and
Auxiliary Carry.

Example: Assume it is necessary to implement the SBI instruc-
tion. The contents of the data byte will then be added to the
Carry Bit and the result subtracted from the accumulator.

Since this is a subtraction operation, the Carry Bit will be
set to 1 if no carry occurred (meaning a borrow occurred) and
reset to 0 if a carry occurred (meaning a borrow did rot occur).

ANI (AND IMMEDIATE WITH ACCUMULATOR) 11 100 110
(Data)

Operation: The contents of the data byte are logically ANDed
with the contents of the accumulator. The Carry Bit is reset
to 0.

Status Bits Affected: Carry, Sign, Zero, and Parity.

(Byte 1)
(Byte 2)

Example: Assume the content of the data byte is 00 111 011
and the content of the accumulator is 11 101 110. An ANI
instruction will then cause the contents of both bytes to be
ANDed together bit-by-bit. Since the logical ANDing of two
bits is 1 only if both bits are 1, the following procedure
occurs:

00 111 011 (Data Byte)
11 101 110 (Accumulator)
00 101 010 Data Byte AND Accumulator
XRI (EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR) 11 101 110 (Byte 1)

(Data) (Byte 2)

Operation: The data in byte 2 of the instruction is EXCLUSIVE-
ORed with the accumulator byte. The Carry Bit is reset to O.

Status Bits Affected: Carry, Sign, Zero, and Parity.

Example: A bit is unchanged when EXCLUSIVE-ORed with a O

and complemented when EXCLUSIVE-ORed with a 1. Therefore

the EXCLUSIVE-ORed function can be used to complement any or
all of the bits in the accumulator. For example, to complement
all but the 7 position bit in the accumulator would require

the following data byte: 01 111 111. If the accumulator byte
is 10 110 001, the following operation will occur upon im-
plementation of the XRI instruction:

01 111 11 (Data Byte)
10 110 001 (Accumulator)
11 001 110 Data Byte EXCLUSIVE-OR
Accumulator
ORI (LOGICAL OR IMMEDIATE WITH ACCUNULATOR) 11 110 110 (Byte 1)

(Data) (Byte 2)

Operation: The data in byte 2 of the instruction is Togi-
cally ORed with the accumulator byte. The Carry Bit is re-
set to O.

" Status Bits Affected: Carry, Sign, Zero, and Parity.

Example: The ORI instruction can be used to add 1 to the
accumulator. Assume the accumulator byte is 10 000 100 and
an ORI instruction is present. Since the ORing of two bits
produces a 0 only if the value of the two bits is 0, the data
byte 00 000 001 will add 1 to the accumulator if the 0 po-
sition bit is 0. Otherwise the accumulator byte will be un-
changed.

CPI (COMPARE IMMEDIATE WITH ACCUMULATOR) 11T 111 110 (Byte 1)
(Data) (Byte 2)

Operation: The data in byte 2 of the instruction is compared
with the content of the accumulator by subtracting the for-
mer from the latter. The contents of the accumulator and data
byte are unaffected by this operation, and the Status Bits

are set or reset as appropriate.

Status Bits Affected: Carry, Zero, Sign, Parity, and Auxil-
iary Carry.

Example: The CPI instruction is useful in determining when
the content of the accumulator equals that of the data byte.
If the two bytes are equal, the subtraction process will give
a 0 result, and the Zero Status Bit will be set to 1. If the —
data byte contents are greater than the accumulator contents,
the Carry Bit will be set to 1 since a subtraction has occurred.
If the Data byte contents are less than the accumulator con-
tents, the Carry Bit will be reset to O.

G. BRANCHING INSTRUCTIONS

The ALTAIR 8800 has an extensive branching capability.
Branching permits the computer to jump from one step in the
program to another. Branching also permits the computer to
call a specified set of instructions from memory and insert
it into the program. A return feature permits the computer
to resume normal operation after the specified instruction
set is executed.

Branching is one of the mcst important capabilities of a
computer. Jumping from one point in the program to another,
for example, saves time, and calling a special set of instruc-
tions from memory means a frequently used instruction sequence
need be stored at only one place in memory. The result is an
important increase in computer processing speed and efficiency.
Branching also adds to the economy of a computer since less
memory is required to accomplish complex programs. And the
ability to call frequently used instruction sets from memory
can save considerable programming time.

The term subroutine is used to describe a special set of in-

structions stored in memory. Typical subroutines might in-

clude instruction sets for calculating trigonometric func- n
tions and square roots or making complex logical comparisons.

Each of these subroutines can be quite lengthy. If a program

requires a dozen or more trigonometric operations and several

square root extractions, it is obvious that the use of sub-

routines can save considerable programming time and memory

space.

Branching instructions can be either conditional or uncon-
ditional. A conditional branch means a particular branching
operation is accomplished only if a specified condition is met.
For example, a typical conditional branch instruction is CZ
(CALL IF ZEROQ). If the zero bit is indeed zero when the CZ
instruction is processed, the Program Counter will automati-
cally move to the address in memory specified in the two ad-
dress bytes which follow the CZ instruction in the program.

Unconditional branching causes a branch to occur without the
necessity for meeting certain specified conditions.

Branching instructions require either one or three bytes per
instruction. The first byte is the actual instruction while
the second and third bytes are, respectively, the low and
high memory addresses. The address bytes tell the Program

12

Counter where to move. The instructions which require only
one byte need no memory addresses since some of the bits in
the byte refer the Program Counter to certain registers or
the Stack Pointer, either of which contains the necessary
addressing information.

1. JuMP INSTRUCTIONS

JUMP instructions permit the normal execution sequence of a
program to be either conditionally or unconditionally altered.
For example, a program might include a set of instructions

to be executed if the result of a previous operation is greater
than zero. If, however, the result is zero, the set of in-
structions becomes superfluous and unnecessary. The program,
therefore, includes a JUMP statement which instructs the com-
puter to advance to any specified address past the instruc-
tion set. Since the jump would be implemented only if the
result of the preceeding operation were zero, this would be

a conditional branching operation. The actual machine lan-
guage mnemonic for this particular instruction is JZ (JUMP

IF ZERO).

A11 but one of the ten JUMP instructions require three bytes.
The first byte is the specific machine language instruction,
while the second and third bytes are, respectively, the Tow

and high memory addresses for the portion of the program to —_

be selected by the Program Counter if a jump is implemented.
The PCHL instruction requires only the initial machine lan-
guage instruction byte since the memory locations to which
the program jumps are known by the computer. The memory lo-
cations in this case happer to be the H and L Registers, the
contents of which are placed into the Program Counter.

With the exception of the PCHL and JMP instructions, all JUMP
instructions are conditional. If a specified condition is
true, the Program Counter automatically advances to the ad-
dress specified in the instruction. If the specified con-
dition is not true, the program continues its sequential ex-
ecution and a jump does not occur.

PCHL (LOAD PROGRAM COUNTER) 11 101 001 (Byte 1)

Operation: The Program Counter jumps to the Memory address
specified by the contents of the H and L Registers. The

most significant 8 bits of the Program Counter are loaded with
the contents of the H Register and the Teast significant 8

bits of the Program Counter are loaded with the contents of the
L Register.

Status Bits: Unaffected.

Example: Assume the contents of the H and L Registers are
as follows:

H: 10 1171 000
L: 11 010 110

Instruction PCHL will automatically transfer this Memory ad-
dress to the Program Counter as shown below:

Most Significant Least Significant
Program Counter: 10 111 000 11 010 110

The program will now continue to execute after having jumped
to the new address specified in the Program Counter.

JMP (Jump) 11 000 011 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: The Program Counter jumps unconditionally to the

Memory address specified in bytes 2 and 3 and the program

continues to execute from the new location.

Status Bits: Unaffected.

Example: Assume the JMP instruction and address bit pattern
is as follows:

11 000 ON (Byte 1)
10 111 000 (Byte 2)
11 010 110 (Byte 3)

The Program Counter will jump to the address in Memory spe-
cified by bytes 2 and 3 and program execution will continue
from the new address.

13

JC (JUMP IF CARRY) 11 011 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Carry Bit is 1, a carry has occurred and the Pro-
gram Counter jumps to the address specified in bytes 2 and 3.
Program execution then continues from the new address. If
the Carry Bit is 0, no carry has occurred and the program
continues sequential execution.

Status Bits: Unaffected.
Example: Assume the Carry Bit is 1 and a JC instruction is
present. The Program Counter will then jump to the address

specified in bytes 2 and 3 and the program will continue at
the new address.

UNC (JUMP IF NO CARRY) 11 010 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Carry Bit is 0, no carry has occurred, and the
Program Counter jumps to the address specified in bytes 2 and
3. Program execution then continues from the new address.

If the Carry Bit is 1, a carry has occurred and the program
continues sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the JC
instruction will illustrate operation of the JINC instruction.

JZ (JuMP IF ZERO) 11 001 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)
Operation: This is a conditional instruction. If the sta-

tus of the Zero Bit is 1, a zero is present and the Program
Counter jumps to the address specified in bytes 2 and 3.

