Program execution then continues from the new address. If
the Zero Bit is 0, a zero is not present and the program con-
tinues sequential operation.

Status Bits: Unaffected.

Example: Assume the Zero Bit is 1 (zero present) and a JZ
instruction is present. The Program Counter will then jump
to the address specified in bytes 2 and 3 and the program
will continue at the new address.

JNZ (JUMP IF NOT ZERO) 11 000 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the status
of the Zero Bit is O (zero not present) and a JNZ instruc-
tion is present, the Program Counter jumps to the address
specified in bytes 2 and 3. Program execution then continues
from the new address. If the Zero Bit is 1, a zero is pre-
sent, and the program continues sequential operation.

Status Bits: Unaffected.

Example: The inverse of the example provided under the JZ
instruction will illustrate operation of the JNZ instruction.

JM (JuMP IF MINUS) 11 111 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Sign Bit is 1 (a negative result), the Program
Counter jumps to the address specified in bytes 2 and 3.
Program execution then continues from the new address. If
the Sign Bit is 0, the result is positive and the program
continues sequential operation.

Status Bits: Unaffected.
Example: Assume the Sign Bit is 1 indicating a negative re-

sult and the JM instruction is present. The Program Counter
will then jump to the address specified in bytes 2 and 3 of

the instruction and the program will continue at the new ad-
dress.

JP (JuMP IF POSITIVE) 11 110 010 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Sign Bit is 0 (a positive result), the Program
Counter jumps to the address specified in bytes 2 and 3.
Program execution then continues from the new address. If
the Sign Bit is 1, the result is negative and the program con-
tinues sequential operation.

Status Bits: Unaffected.

Example: The inverse of the example provided under the JM in-
struction will illustrate operation of the JP instruction.

JPE (JUMP IF PARITY IS EVEN) 11 101 010 (Byte 1)
(Low Address) (Byte 2)

(High Address) (Byte 3°
Operation: This is a conditional instruction. If the sta-
tus of the Parity Bit is 1 (a result with even parity), the
Program Counter jumps to the address specified in bytes 2 and
3. Program execution then continues from the new address.
If the Parity Bit is 0, the parity is odd and the program
continues sequential operation.

Status Bits: Unaffected.
Example: Assume the Parity Bit is 1 indicating the result
has even parity and the JPE instruction is present. The Pro-

gram Counter will jump to the address specified in bytes 2
and 3 and the program will continue at the new address.

JPO (JuMP IF PARITY ODD) 11 100 010 (Byte 1)
- (Low Address) (Byte 2)

(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Parity Bit is 0 (a result with odd parity), the
Program Counter jumps to the address specified by bytes 2 and
3. Program execution then continues from the new address.

If the Parity Bit is 1, the parity is even and the program
continues sequential operation.

Status Bits: Unaffected.

Example: The inverse of the example provided under the JPE
instruction will illustrate operation of the JPO instruction.

2. CALL INSTRUCTIONS

CALL instructions cause a program to execute a subroutine
stored at a specified location in memory. The CALL instruc-
tion may be either conditional or unconditional. Many sub-
routines are called unconditionally. For example, the cal-
culation sequence for extracting a square root is relatively
lengthy. In a program which requires frequent square root
extractions, considerable programming time and memory space
can be saved by writing a single square root extraction sub-
routine. This subroutine can then be stored in memory and
called by the program each time it is needed.

Conditional CALL instructions are available also. They per-
mit a great deal of flexibility since the programmer can
instruct the computer to make logical decisions about the
status of the program at any specified point. A subroutine
can then be called if a specified condition is met.

When a subroutine has been executed, the Program Counter re-
turns to the next step in the main program by means of a
special RETURN instruction. This instruction is described
in the next section.

A1l the CALL instructions require three bytes. The first

byte is the specific machine language instruction while the

second and third bytes are, respectively, the low and high

Memory addresses for the first instruction of the subroutine.

CALL (CALL) ‘ 11 001 101 (Byte 1)
(Low Address) (Byte 2)

(High Address) (Byte 3)

Operation: The Program Counter unconditionally moves to the
Memory address specified in bytes 2 and 3. The subroutine
at the new location is then executed.

Status Bits: Unaffected.

Example: Assume the CALL instruction and address bit pattern
is as follows:

11 001 101 (Byte 1)
10 101 111 (Byte 2)
11 111 010 (Byte 3)

The Program Counter will move to the address in Memory spe-
cified by bytes 2 and 3 and the subroutine at that location
will then be executed.

cC (CALL IF CARRY) 11 011 100 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This a conditional instruction. If the status
of the Carry Bit is 1, a carry has occurred and the Program
Counter moves to the address specified in bytes 2 and 3.
The subroutine at this location is then executed. If the
Carry Bit is 0, no carry has occurred, and the program con-
tinues sequential execution.

Status Bits: Unaffected.

Example: Assume the Carry Bit is 1 and the CC instruction

is present. The Program Counter will then jump to the

address specified in bytes 2 and 3 and the subroutine at that

location will be executed.

CNC (CALL IF NO CARRY) 11 010 100 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Carry Bit is 0, a carry has not occurred, and the

Program Counter moves to the address specified in bytes 2 and 3.
The subroutine at that location is then executed. If the

Carry Bit is 1, a carry has occurred, and the Program Counter
continues sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the CC
instruction will illustrate operation of the CNC instruction.

z (CALL IF ZERO) 11 001 100 (Byte 1)
(Low Address) (Byte 2)

(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-
tus of the Zero Status Bit is 1, a zero is present, and the
Program Counter moves to the address specified in bytes 2 and
3. The subroutine at this location is then executed. If the
Zero Status Bit is 0, no zero is present, and the program
continues sequential executicn.

Status Bits: Unaffected.

Example: Assume the Zero Status Bit is 1 and the CZ instruc-
tion is present. The Program Counter will then move to the
address specified in bytes 2 and 3, and the subroutine at
that Tocation will be executed.

CNZ (CALL IF NOT ZERO) 11 000 100 (Byte 1)
(Low Address) (Byte 2)

(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-

tus of the Zero Status Bit is 0, a zero is not present, and

the Program Counter moves to the address specified in bytes

2 and 3. The subroutine at this location is then executed.

If the Zero Status Bit is 1, a zero is present, and the pro-
gram continues sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the CZ
instruction will illustrate operation of the CNZ instruction.

19

80

| (CALL IF MINUS) 11 111 100 (Byte 1) _

(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the
status of the Sign Bit is 1 (a negative result), the Pro-
gram Counter moves to the address specified in bytes 2

and 3. The subroutine at this location is then executed.
If the Sign Bit is 0, the result is positive, and the pro-
gram continues sequential execution.

Status Bits: Unaffected.

Example: Assume the Sign Bit is 1 and the CM instruction is
present. The Program Counter will then move to the address

specified in bytes 2 and 3, and the subroutine at that loca-
tion will be executed.

P (CALL IF PLUS) 11 110 100 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

Operation: This is a conditional instruction. If the sta-

tus of the Sign Bit is 0 (a positive result), the Program

Counter moves to the address specified in bytes 2 and 3.

The subroutine at this location is then executed. If the

Sign Bit is 1, the result is negative, and the program con-

tinues sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the CM
instruction will illustrate operation of the CP instruction.

CPE (CALL IF PARITY EVEN) 11 101 100 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)
Operation: This is a conditional instruction. If the sta-

tus of the Parity Bit is 1 (a result with even parity), the
Program Counter moves to the address specified in bytes 2

and 3. The subroutine at this location is then executed.
If the Parity Bit is 0, the parity is odd, and the program
continues sequential execution.

Status Bits: Unaffected.

Example: Assume the status of the Parity Bit is 1 and a

CPE instruction is present. The Program Counter will then
move to the address specified in bytes 2 and 3, and the sub-
routine at that location will be executed.

PO (CALL IF PARITY ODD) 11 100 100 (Byte
(Low Address) (Byte
(High Address) (Byte

Operation: This is a conditional instruction. If the status
of the Parity Bit is 0 (a result with odd parity), the Pro-
gram Counter moves to the address specified in bytes 2 and

3. The subroutine at this location is then executed. If the
Parity Bit is 1, the parity is even, and the program continues
sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the CPE
instruction will illustrate operation of the CPO instruction.

3. RETURN INSTRUCTIONS

When a CALL subroutine instruction is executed, the address

of the next sequential instruction in the program is auto-
matically pushed onto the stack. The subroutine may have ore
or more RETURN statements. An unconditional RETURN instruc-
tion is included at the end of most subroutines. This instruc-
tion pops the last address stored in the stack by the CALL in-
struction from the stack and onto the Program Counter. When
the subroutine has been executed, the program resumes sequen-
tial execution at the address following the initial CALL sub-
routine instruction.

Conditional RETURN instructions may be scattered throughout
a subroutine. If the required condition is met, the program
resumes sequential execution in the manner just described.

1)
2)
3)

81

82

Since the program address to which the Program Counter re- _
turns upon receiving a RETURN instruction is already stored
on the stack, RETURN instructions require only one byte.
The last bit in the byte is 1 for an unconditional RETURN
and 0 for conditional RETURNS.

RET (RETURN) 11 001 001 (Byte 1)

Operation: The subroutine is completed, and the Program
Counter automatically and unconditionally returns to the
next address following the initial CALL subroutine instruc-
tion.

Status Bits: Unaffected.

Example: Assume two of the instruction statements in an
ALTAIR 8800 program are as follows:

CALL 11 001 101 (Byte 1)
(Low Address) (Byte 2)
(High Address) (Byte 3)

CMA 00 101 1N (Byte 1)

Upon receiving the CALL instruction, the Program Counter
moves to the address in Memory specified by bytes 2 and 3.
Simultaneously, the address of the next sequential instruc-
tion (CMA) is pushed onto the stack.

The final instruction in the subroutine must be an uncondi-
tional RETURN (only if you wish to return). When execution
of the subroutine is complete and the RET instruction is
reached, the Program Counter automatically receives the ad-
dress of the next instruction in the main program from the
stack (CMA), and sequential execution resumes.

RC (RETURN IF CARRY) 11 011 000 (Byte 1)

Operation: This is a conditional instruction which may be
inserted before the end of a subroutine. If the status of

the Carry Bit is 1, a carry has occurred and the Program Coun-
ter automatically returns to the next, sequential address in

the main program following the initial CALL subroutine instruc-
tion.

Status Bits: Unaffected.

Example: Assume three of the instructions in a subroutine
are as follows:

RAL 00 10 1M (Byte 1)
RC 11 011 000 (Byte 1)
STAX 00 000 010 (Byte 1)

If the status of the Carry Bit is 1 when the RC instruction
is reached, a carry has occurred and the Program Counter
automatically returns to the next sequential address in the
main program following the initial CALL subroutine instruc-
tion. If the status of the Carry Bit is 0, the subroutine
continues sequential execution by implementing the STAX
instruction.

RNC (RETURN IF NO CARRY) 11 010 000

Operation: This is a conditional instruction which may be
inserted before the end of a subroutine. If the status of
the Carry Bit is 0, a carry has not occurred and the Program
Counter automatically returns to the next sequential address
in the main program following the initial CALL subroutine
instruction. If the status of the Carry Bit is 1, a carry
has occurred, and the subroutine continues sequential execu-
tion.

Status Bits: Unaffected.

Example: The inverse of the example provided under the RC
instruction will illustrate operation of the RNC instruction.

RZ (RETURN IF ZERO) 11 001 000

Operation: This is a conditional instruction which may be
inserted before the end of a subroutine. If the status of
the Zero Status Bit is 1, a 0 is present and the Program
Counter automatically returns to the next sequential address
in the main program following the initial CALL subroutine
instruction. If the status of the Zero Status Bit is 0, a
zero is not present and the subroutine continues sequential
execution.

Status Bits: Unaffected.

(Byte 1)

(Byte 1)

83

84

Example: Assume three of the instructions in a subroutine
are as follows:

ADD 10 000 101 (Byte 1)
RZ 11 001 000 (Byte 1)
LDAX 00 011 010 (Byte 1)

If the status of the Zero Status Bit is 1 when the RZ instruc-
tion is reached, a zero result is present and the Program
Counter automatically returns to the next sequential address
in the main program following the initial CALL instruction.

If the status of the Zero Status Bit is 0, the subroutine
continues execution by implementing the LDAX instruction.

RNZ (RETURN IF NOT ZERO) 11 000 000 (Byte 1)

Operation: This is a conditional instruction which may be
inserted before the end of a subroutine. If the status of the
Zero Status Bit is 0, a zero result is not present and the
Program Counter automatically returns to the next sequential
address in the main program following the initial CALL sub-
routine instruction. If the status of the Zero Status Bit

is 1, a zero result is present, and the subroutine continues
sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the RZ
instruction will illustrate operation of the RNZ instruction.

RM (RETURN IF MINUS) 11 111 000 (Byte 1)

Operation: This is a conditional instruction which may be
jnserted before the end of a subroutine. If the status of
the Sign Bit is 1 (a negative result), the Program Counter
automatically returns to the next sequential address in the
main program following the initial CALL subroutine instruc-
tion. If the status of the Sign Bit is 0 (a positive result),
the subroutine continues sequential execution.

Status Bits: Unaffected.

Example: Assume three of the instructions in a subroutine
are as follows:

SuB 10 010 001 (Byte 1)
RM 11 111 000 (Byte 1)
LDAX 00 011 010 (Byte 1)

If the status of the Sign Bit is 1 when the RM instruction

is reached, a negative result is present, and the Program
Counter automatically returns to the next sequential address
in the main program following the initial CALL subroutine
instruction. If the status of the Sign Bit is 0, the subrou-
tine continues sequential execution by implementing the

LDAX instruction.

RP (RETURN IF PLUS) 11 110 000 (Byte 1)

Operation: This is a conditional instruction which may be
inserted before the end of a subroutine. If the status of the
Sign Bit is 0 (a positive result), the Program Counter auto-
matically returns to the next sequential address in the pro-
gram following the initial CALL subroutine instruction. If the
status of the Sign Bit is 1 (a negative result), the subrou-
tine continues sequential execution.

Status Bits: Unaffected.

Example: The inverse of the example provided under the RM
instruction will illustrate operation of the RP instruction.

RPE (RETURN IF PARITY EVEN) 11 101 000 (Byte 1)

Operation: This is a conditional instruction which may be
inserted before the end of a subroutine. If the status of
the Parity Bit is 1 (a result with even parity), the Pro-
gram Counter automatically returns to the next sequential
address in the main program following the initial CALL sub-
routine instruction. If the status of the Parity Bit is O
(a result with odd parity), the subroutine continues sequen-
tial execution.

Status Bits: Unaffected.

Example: Assume three of the instructions in a subroutine
are as follows:

CMP : 10 111 001 (Byte 1)
RPE 11 101 000 (Byte 1)

86

RLC 00 000 111 (Byte 1)

If the status of the Parity Bit is 1 when the RPE
instruction is reached, the parity of the result is even,
and the Program Counter automatically returns to the next
sequential address in the main program following the ini-
tial CALL subroutine instruction. If the status of the

Parity Bit is odd,

the subroutine continues sequential

execution by implementing the RLC instruction.

RPO (RETURN IF PARITY 0DD) 11 100 000

Operation: This i

s a conditional instruction which may be

inserted before the end of a subroutine. If the status of

the Parity Bit is

0 (a result with odd parity), the Program

Counter automatically returns to the next sequential address
in the main program following the jnitial CALL subroutine
instruction. If the status of the Parity Bit is 1 (a re-

sult with odd pari
execution.

ty), the subroutine continues sequential

Status Bits: Unaffected.

Example: The inverse of the example provided under the RPE

instruction will i

1lustrate operation of the RPO instruction.

(Byte 1)

APPENDIX. ALTAIR 85800 INSTRUCTION SET

Definitions:
DDD Destination Register
SSS Source Register
rp Register Pair

Register Designations:

Register (SSS or DDD)

rTmoOoOom

Memory
Accumulator

Register Pair

B and C
D and E
H and L
SP

Bit

Bit

Pattern

000
001
010
011
100
101
110
111

Pattern

00
01
10
11

87

COMMAND INSTRUCTIONS

1. Input/Output Instructions

Mnemonic Bytes Cycles Binary Code Octal Code
In 2 3 11 011 011 333
Out 2 3 11 010 011 323

2. Interrupt Instructions

Mnemonic Bytes Cycles Binary Code Octal Code

EI 1 1 11 111 oM 373
DI 1 1 11 110 011 363
HLT 1 1 01 110 110 166
RST 1 3 11 exp 111 3(exp)7

3. Carry Bit Instructions

Mnemonic Bytes Cycles Binary Code Octal Code
CMC 1 1 00 111 111 077
STC 1 1 00 110 111 067

4. No Operation Instruction

Mnemonic Bytes Cycles Binary Code Octal Code
NOP 1 1 00 000 000 000

SINGLE REGISTER INSTRUCTIONS

Mnemonic Bytes Cycles Binary Code Octal Code

INR 1 3 00 DDD 100 o(DDD)4
DCR 1 3 00 DDD 101 0(DDD)5
CMA 1 1 00 101 111 057

DAA 1 1 00 100 111 047

APPENDIX. ALTAIR 4800 INSTRUCTION SET

Definitions:

DDD Destination Register
SSS Source Register
rp Register Pair

Register Designations:

Register (SSS or DDD)

rmrIZTmooOow

Meniory
Accumulator

Register Pair

B and C
D and E
H and L
SP

Bit

Bit

Pattern

000
001
010
on
100
101
110
11

Pattern

00
01
10
1

817

COMMAND INSTRUCTIONS
1. Input/Output Instructions
Mnemonic Bytes Cycles
In 2 3
Out 2 3
2. Interrupt Instructions

Mnemonic Bytes Cycles

EI 1 1
DI 1 1
HLT 1 1
RST 1 3

3. Carry Bit Instructions
Mnemonic Bytes Cycles
CMC 1 1
STC 1 1
4. No Operation Instruction
Mnemonic Bytes Cycles

NOP 1 1

SINGLE REGISTER INSTRUCTIONS

Mnemonic Bytes Cycles
INR 1 3
DCR 1 3
CMA 1 1

DAA 1 1

Binary
11 011
11 010

Binary
11 111
11 110
01 110

11 exp

Binary
00 111
00 110

Binary

00 000

Binary
00 DDD
00 DDD
00 101
00 100

Code
011
011

Code
011
011
110
11

Code
111
111

Code
000

Code
100
101
1M1
11

Octal Code
333
323

Octal Code
373
363
166
3(exp)7

Octal Code
077
067

Octal Code
000

Octal Code
0(DDD)4
0(DDD)5

057
047

C. REGISTER PAIR INSTRUCTIONS

Mnemonic Bytes Cycles Binary Code

~ PUSH 1 3 11 (rp)0 107
POP 1 3 11 (rp)0 001
DAD 1 3 00 (rp)1 001
INX 1 1 00 (rp)0 011
DCX 1 1 00 (rp)1 011
XCHG 1 1 11 101 011
XTHL 1 5 11 100 011
SPHL 1 1 11 111 001

D. ROTATE ACCUMULATOR INSTRUCTIONS

Mnemonic Bytes Cycles Binary Code
RLC 1 1 00 000 111
RRC 1 1 00 001 111
RAL 1 1 00 010 111
RAR 1 1 00 017 111

E. DATA TRANSFER INSTRUCTIONS
1. Data Transfer Instructions

Mnemonic Bytes Cycles Binary Code

MOV 1 1or?2 01 DDD SSS
STAX 1 2 00 0X0 010*
LDAX 1 2 00 0X0 010*

*NOTE: Register Pair B and C -- 0 at X
Register Pair D and E -- 1 at X

Octal Code
3(rp)5
3(rp)1
0(rp)1
0(rp)3
0(rp)3
353
343
371

Octal Code
007
017
027
037

Octal Code
1(DDD)(SSS)
0(X)2
0(Xx)2

89

2. Register/Memory to Accumulator Transfers

80

Mnemonic Bytes Cycles Binary Code Octal Code
ADD 1 1 10 000 SSS 20 (SSS)
ADC 1 1 10 001 SSS 21 (SSS) -
SUB 1 1 10 010 SSS 22 (SSS)
SBB 1 1 10 011 SSS 23 (SSS)
ANA 1 1 10 100 SSS 24 (SSS)
XRA 1 1 10 101 SSS 25 (SSS)
ORA 1 1 10 110 SSS 26 (SSS)
CMP 1 1 10 111 SSS 27 (SSS)
3. Direct Addressing Instructions
Mnemonic Bytes Cycles Binary Code Octal Code
STA 3 4 00 110 010 062
LDA 3 4 00 111 010 072
SHLD 3 5 00 100 010 042
LHLD 3 5 00 101 010 052 _
F. IMMEDIATE INSTRUCTIONS
Mnemonic Bytes Cycles Binary Code Octal Code
LXI 3 3 00 (rp)0 001 0(rp)1
MVI 2 2 or3 00 SSS 110 0(SSS)6
ADI 2 2 11 000 110 306
ACI 2 2 11 001 110 316
SUl 2 2 11 010 110 326
SBI 2 2 11 011 110 336
ANI 2 2 11 100 110 346
XRI 2 2 11 101 110 356
ORI 2 2 11 110 110 366
CP1 2 2 11 111 110 376 —

G- BRANCHING INSTRUCTIONS
1. Jump Instructions

Mnemonic Bytes Cycles Binary Code Octal Code

PCHL 1 1 11 101 001 351
JMP 3 3 11 000 011 303
JC 3 3 11 011 010 332
JNC 3 3 11 010 010 322
JZ 3 3 11 001 010 312
JNZ 3 3 11 000 010 302
JM 3 3 11 111 010 372
JP 3 3 11 110 010 362
JPE 3 3 11 101 010 352
JPO0 3 3 11 100 010 342

2. Call Instructions

Mnemonic Bytes Cycles Binary Code Octal Code

CALL 3 5 11 001 101 315
CC 3 3orb 11 011 100 334
CNC 3 Jors 11 010 100 324
CZ 3 Jorb 11 001 100 314
CNZ 3 Jorsb 11 000 100 304
CM 3 3ors 11 111 100 374
cP 3 3orb 11 110 100 364
CPE 3 Jors 11 101 100 354

CPO 3 3orb 11 100 100 344

92

3. Return Instructions

Mnemonic

RET
RC
RNC
RZ
RNZ
RM
RP
RPE
RPO

Bytes

1
1
1

Cycles

3
1 or
1 or
1 or
1 or
1 or
1 or
1 or

1 or

w W

Binary

11
11
11
11
11
11
11
11
11

001
011
010
001
000
111
110
101
100

Code
001
000
000
000
000
000
000
000
000

Octal Code

31
330
320
310
300
370
360
350
340

SERVICE

Should you have a problem with your computer, it can be returned to MITS
for repair. If the unit is still under warranty, any defective part will
be replaced free of charge. The purchaser is responsible for all postage.

In no case should a unit be shipped back without the outer case fully assembled.

If you need to return the unit to us for any reason, remove the top cover
of your computer and secure the cards in their sockets with tape and fill
the space between the case top and the cards with packing material. Secure
cover and pack the unit in a sturdy cardboard container and surround it on
all sides with a thick layer of packing material. You can use shredded
newspaper, foamed plastic or excelsior. The packed carton should be neat-
1y sealed with gummed tape and tied with a stout cord. Be sure to tape a
letter containing your name and address, a description of the malfunction,
and the original invoice (if the unit is still under warranty) to the out-

side of the box.

Mail the carton by parcel post or UPS--for extra fast service, ship by air

parcel post. Be sure to insure the package.

SHIP TO: MITS, Inc.
6328 Linn Ave. N.E.
Albuquerque, New Mexico 87108

A1l warranties are void if any changes have been made to the basic design of

the machine or if the internal workings have been tampered with in any way.

MITS AITATR 8800
Price List

January 1, 1976

Days

Part Number Description Kit Assem Delivery
8800 Altair 8800 Computer $ 439.00 5 621.00 60
COMTER II Terminal w/Audio Cassette I1/0 780.00 920.00 60
CT-256 Comter 256 Terminal 745.00 885.00 45-580
CT257,8 or 9 Pages 2, 3, or 4 for CT-256 95.00 105.00 45-60
CT-8096 CRT Terminal TBD TBD TBD
88-VLCT Low Cost Terminal 129.00 169.00 45-60
88-80LP Line Printer & Controller 1,750.00 1,975.00 60
88-TTY Teletype ASR-33 1,500.00 1,500.00 60
88-MM Adds 256 words to 88-MCS 14.00 26.00 30
88-1MCS 1K Static Memory 97.00 139.00 30
88-4MCD 4K Dynamic Memory 195.00 275.00 60
88~DCDD Disc Controller & 1 Drive 1,480.00 1,980.00 60
88-DISC Disc Drive in Cabinet 1,180.00 1,600.00 60
88-DMAC Direct Memory Access Cont. 98.00 149.00 TBD
88-DMAE Direct Memory I/0 Channel 126.00 186.00 TBD
88-DMAI Direct Memory I/0 Channel 123.00 183.00 TBD
88-4PI0 L Port Parallel I/0 86.00 112.00 30
88-PP Extra Port on 4PI0 30.00 39.00 30
88-2S10 2 Port Serial Board (State

I/0) 115.00 144,00 30
88-SPp Extra Port for 2SI0 Board 24,00 35.00 30
88-~EC Expander Mother Board only 16.00 31.00 30
88-MB 88-EC inc. connectors and

card guides 65.00 138.00 30
88-EBC Expander Cabinet 394.00 485.00 60
88-~EXC Extender Card 57.00 83.00 30
88-ACR Audio Cassette Record Interface 128.00 174.00 30
88-VI Vectored Interrupt 126.00 179.00 90
88-RTC Real Time Clock 53.00 84.00 90
88-PPCB Prototype PC Board 57.00 84.00 30
88-FAN Cooling Fan 16.00 20.00 30
88-FMC PROM Memory Card (no PROM's) 65.00 128.00 60
88-PROM PROM's (256 x 8 Bytes) 25.00 37.00 60
88-PPC PROM Programmer Card CONTACT FACTORY 90
25DB I/0 Socket for Cabinet Case 11.00 25.00 30
MS-416 MITScope~--4 channel scope 127.00 189.00 30
680F 680 MPU Unit (Assem state I/0) 345.00 420.00 60
680T 680 Less Front Panel 280.00 60
680 CPU Bd CPU Board w/microprocessor chip 195.00 275.00 60
680 PROM 256 x 8-Bit PROM 25.00 37.00 60
680FAN Peewee Fan Option 16.00 20.00 60
680Sacket 680 IC Socket Option ©29.00 42,00 60

Prices, specifications, development and delivery all subject to change
without notice.

Sugqguotod U800 Systom Pricos

Hystom | ALTAIR Basic 1

Systaom [l ALTAIR Cxtendend Basic 11
System IIT ALTAIR DOS/Basic 111

Systam

(To substitute telet
to assembled price.

IV ALTAIR Extended Engr/Acctqg

v

Days
Kit Assom Dnlivery

1,712.0n0 2,265.00 60
1,893.00 2,566.00 60
4,714,00 6,397.00 90
7,938.00 9,985.00 120

gpe for COMTER II add $720.00 to kit or $580.00

Postage and Handling for systems will be subject to quotation,

Software for 8800 Systems

4K Ba
8K Ba
EXT B
Packa
DOS

DEBUG

$

Manuals

CT-256

sic $150.00
sic $200.00
asic $350,00

ge #1 $175.00
$500.00
$100.00

Prices for Purchasers of 8800 plus:

4K
w/ 8K
w/12K
w/ 8K
w/12K
4K

memory,
memory,
memory,
memory,
memory,
memory,

1/0
1/0
1;0
1/0
1/0
1/0

$ 60.00 30
$ 75.00 30
$ 150.00 30
$ 30.00 30 -
$ 150.00 60
$ 25.00 60

15.00 copying charge for update copy or second copy

Copying charge in addition

to update charge will be imposed for those

updating their softwarae.

PLEASE SPECIFY PAPER TAPE OR AUDIO TAPE WHEN ORDERING SOFTWARE
except for DOS which is available only on DISC.

of above softuware.

Operator's
Assembly

Theory of Operation

Theory of Operation

Theory of Operation

6.50
10.00
10.00

7.50
9.00
9.00

7.50
7.50
10.00

?

BASIC Language
Documentation 10.00

Special 0Offer--All Three
Manuals in a Binder--$15.00

Special Offer--All Three
Manuals in a Binder--$14.50

Cash with order, Mastercharge or Bankamericard

8800 Operator's
Assembly

680 Nperator's
Rssembly

Postage & Terms

Terms:

Postage & Handling:

1. Add $8.00 for each terminal, computer, line printer
and disc
2. Add for Modular Boards

a.
b.

-0- if ordered with computer
$3.00 if ordered separately

3. Postage included in price of manuals
4. Teletype orders will be sent truck freight charges
collect.
5. Canada, Hawaii & Alaska postage charges subject to
quotation.
Above applies to domestic shipments in U.S5.A. only. Overseas
shipment, unless otherwise specified are usually made by
airfreight via our shipping agents, Emery Airfreight, on
airfreight collect basis,

