com
agle

Volume 3 Issue 2

GET
INTO

CN

The race is on to submit quality manuscripts on
applications, troubleshooting, interfacing, software and a
variety of other computer-related topics.

The price for accepted articles is now $25 to $50 per
typeset magazine page. Honorariums are based on technical
quality and suitability for CN’s readership. All submissions
are subject to editing to fit space requirements and

content needs.

Articles submitted to C.N. should be typed,
double-space, with the author’'s name, address and
the date in the upper left-hand corner of each
numbered page. Authors should also include a one-
sentence autobiographical statement about their
job, professional title, previous electronic and/or
computer expereince under the article's title. Authors
should retain a copy of each article submitted.

All illustrations, diagrams, schematics and other
graphic material shouid be submitted in black ink
on smooth white paper. Prints and PMT's are
acceptable. No pencil drawings unless properly
"“fixed!' No halftone or wash drawings.

Whenever possible, art should be done to fin-
ished size. Complicated drawings should be sub-
mitted oversize for reduction to format by C.N.

All artwork should be mailed flat, never folded.
Unless requested, graphics are not returned. Sketches,
roughs and “idea’” drawings are generally not used.

Photos, charts, programs and figures should be
clearly labelled and referred to by number within
the text of the manuscript.

Only clear, glossy black .and white photos (no
Polaroid pictures) will be accepted. Photos should
be taken with uniform lighting and sharp focus.

Program listings should be recorded with the
darkest ribbon possible on blank white paper.

COMPUTER NOTES is published monthly by MITS, Inc., 2450 Alamo SE, Albu-

querque, NM, 87106, (505) 243-7821. A free year’s subscription is included with every
purchase of an Altair™ computer. Regular subscriptions can be ordered from the MITS
Customer Service Dept. for $5 per year in the U.S. and $20 per year for overseas. Single
copies are available for 50¢ each at all Altair Computer Centers. Entire contents copyright,
1977, MITS, Inc. Send articles, questions, comments and suggestions to Editor, COM -
PUTER NOTES, MITS, Inc.

© MITS, Inc. 1977 (Volume 3, Issue 2, July)

2450 Alamo S.E., Albuguerque, New Mexico 87106 NOTE Altair is a trademark of MITS, Inc.

CASE STUDY

By Susan Dixon
MITS

Microprocessor fundamentals,
assembly of an Altair 8800 microcomputer
and troubleshooting techniques form the
major part of a 1640-hour computer
maintenance course currently offered by the
Electronics Department at the Indian
Polytechnic Institute (SIPl) in Albuquerque.

“The class is exclusively hardware-
oriented,” explained instructor Marvin Seal.
Each student is responsible for assembling
a sectiop of the Altair computer system —
CPU board, display/control, motherboard,
etc. Programming instruction is limited to
initializing the system and general utility
routines, he said. Since computer
programming is not offered at SIPi, we help
interested students obtain scholarships at
local schools that do offer it, he added.

Seals said classes are small because
some students don't want to devote over
1600 hours to the class. “Many others are
anxious to return to their families on the
reservation after graduation, and there are
few computer-related jobs on most of the
reservations,” he explained. However, he
said most of the students who have
completed his course are now employed by
AT&T on Navajo reservations throughout
New Mexico.

Seals emphasized the importance of
individualized instruction in his class. “It

School Focuses Instruction
on Altair 8800

students can progress at their own rate,” he
said. He also said that he coordinates his
instruction with a job placement counselor
to meet each student’s vocational needs and
interests.

Seals uses a large BITRAN-6 tube
component computer to introduce students
to the theory of computer operation. He
follows up with the operation and assembly
of the smaller and more powerful Altair 8800

When students learned how to operate
the Altair 8800, he said human errors made
toggling from the front panel an unreliable
process of initialization. “So | had them
interface the unit with an ASR-33, not only to
provide a more accurate method of
initialization but to expose them to the
problems which may be encountered when
interfacing.”

works much better than lectures, because microcomputer. Continued
EDITOR
Andrea Lewis lN TH
ASSISTANT EDITOR lS ISSU E
Linda Blocki
PRODUCTION
Al McCahon Page
Steve Wedeen Case Study: School Focuses Instruction on Altair 8800 1
;:f,zfy"’('.::‘,’,egos Writing Machine Helps Prepare Manuscripts e 2
Alice Regan Inverse Assembler Makes Machine Language Programs
CONTRIBUTORS UnderstandableooooaLl e 5
Susan Dixon Put a Micro in Your School
;ar'eYFDYkl Getting Started with Zero BUucksoiiiiiiiiiiiiiiiiii i 8
Doug Jones GLITCHES: Spot Altair 88-PMC Problemsccooveeen... 1
Ken Knecht Extra Voltage Neededcinnn. e et e, 13
Ron Scales NCC (Photo Page) ...ttt i e ettt 14
h Computer Courses Offered ...ttt 16
0N oS Altair 680b Requires Phase 2 CIock MOd «.............ovvvens.. O 16
© o rmost CIASSIFIEA ASoeweenereeeeeeene e e 16
Atbuquerque, New Mexico 87106
©MITS, Inc. 1977
C/N July, 1977 ONE

Writing Machine Helps
Prepare Manuscripts

By Ken Knecht

Knecht is chief engineer at the Chicago
City College TV Production Center. He’s
the author of DESIGNING AND
MAINTAINING THE SMALL TV AND CATV

School Focuses Instruction
on Altair 8800

During the various stages of assembly,
students observe waveforms around the
chips, look at the buses and learn
troubleshooting techniques and the use of
diagnostic equipment, Seals explained.
“They apply these techniques to problems
encountered during assembly and to
problems that | plant in the system.”

When the Altair 8800 is complete, Seals
said it will be mounted on a cart with 170
provided via a TELETYPE.™ “Then everyone
in the school will want to use it,” he
chuckled. The Optical Technology and
Numerical Processing Departments have
already expressed an interest in assimilating
the Altair computer into their curriculum for
process control, he said.

Seals said one of the future goals of the
computer maintenance program is to
assemble and initialize Altair

TWO

Continued

microcomputers (some will include floppy
disk drives) to be used for record keeping,
bookkeeping, attendance, etc. in many
other departments. Ultimately, Seals said
that he hopes to develop an entire course of
study revolving around Altair
microcomputers. It would be particularly
valuable because microprocessors are now
used in many different types of equipment
and are even found in automobiles,
televisions and sewing machines, he said.

Although Seals does not currently have
his own Altair computer, he said that he
would like to buy one and use it at home for
personal banking, record keeping, a
computerized sprinkler system and as a
control monitor for a fire alarm. “I'd also like
to teach my kids programming, games and
how to hook it up to a mode! train,” he said
with a smile.

STUDIO.

| wrote the following word processing
program for my Altair 8800 to help in typing
manuscripts for magazine articles. | hate to
type, but at least this program permits me to
correct mistakes and rearrange sentences
without having to retype an entire page.

| used Disk Extended BASIC for the
program so that the lines could be stored on
disk. (Avaitable memory would not hold a
large document.) Since the items are
searched for sequentially, two software-
controlled tape recorders could be used to
replace the two major disc files.

Before beginning an explanation of the
program, it's important to understand
several definitions. “Document” is the
material the user wants to process. “Line” is
a sentence or part of a sentence in the
document. “Number” means the reference
line number (not the BASIC program line
number) added to each document. “Block #
XX" refers to flow chart element # XX.

| used four major symbols in the
program. The “&” at the end of a line is the
flag for the end of a paragraph. The “)” at the
end of a line means end of the document.
The “) " at the beginning of a line means
this line is to be printed as entered and not
justified. The “A” at the end of a line
indicates the user wants to re-enter that line
because it was entered wrong.

Originally, | wanted to list the lines in
random access records, using the record
numbers as line numbers. However, to take
full advantage of the random access, | would
have to leave several records open between
each line to permit adding or moving lines.
in order to save disc space, each line would
have to be nearly 128 bytes long to fill each
record. This would mean breaking up
sentences and losing the flexibility of
sentence deletion, addition and
rearrangement. Since discs are limited to
about 2000 records, I'd end up with a disc
capacity of about 700 lines, which wasn’t

C/N July, 1977

enough for some of the material | wanted to
produce. Random files would have
increased speeds for printing and finding
error lines. But I'm usually off doing
something else during the printing routine
anyway. So | decided to use the sequential
disk file access method instead. I've never
run out of disc space, even though several
versions of the program and a few large files
are stored on the word processing disc.
FLOWCHART

First the program is initialized by
setting the variables, counters, arrays, etc.

Then the program prints the line
number and goes to the LINE INPUT
statement (block #2). This statement
accepts any alphanumeric characters,
including commas, double quotes, etc., up
to a carriage return. If the INPUT statement
was used, each line would have to be
enclosed in double quotes, and double
quotes could not be imbedded in the text.

The program checks the line to be sure
it is 120 bytes or less (I leave 8 bytes for the
line number and “/- flag) and doesn't end
with a “A’. Either requests the line to be re-
entered. (See block #3.)

The next block adds a number to the
line (the same one printed before the LINE
INPUT), a space and a *“/” and prints it into
the disc file. | numbered the lines in
increments of 10. Check to see if it was the
last line (completed with a “}"). If not, loop
back to block #2. Otherwise, proceed to the
editing.

Although it's not shown in the flow
chart, at this point the user can print out the
file with line numbers. This is useful if the
user wants to return to the file later and re-
edit it.

Block #7 asks if editing is desired. If so,
it jumps to block #8. Otherwise, it goes to
block #11.

Block #8 sets the edit flag (ED=1) and
then asks for the type of edit — add line, add
null line, replace line, delete line, move line
or finished. The request jumps to the proper
routine. If deletion or replacement is
desired, it asks for the line number, retrieves
the line from the file if requested to do so
and prints it. If the line is to be deleted, it
sets an array element to the line number and
the second dimension of that array to “2”
(originally this was set to “0"). Array
elements are picked by adding one to a
counter at each edit and using the counter
number as the array number. To replace the
line, the program asks for the new line, adds
the old line number and prints it into an error

C/N July, 1977

INITIALIZE
PROGRAM

i

LINE
INPUT

ADD LINE
NUMBER

]

PUT LINE
IN FILE

10

ORDER NUMBERS

12

GET
NEXT LINE

17

FOR ADDED
LINE

DELETE
NUMBER

15

16 ®

JUSTIFY

i

PRINT
LINE

END

FLOWCHART

file. It then puts the line number in the array,
leaving “0” in the second dimension. Finally,
the block loops back to the edit request
statement.

When adding a line, block #1 asks for
the new line number and stores it in the
array. Block 11 also checks to see if there
are any characters in B$. If any of them end
with a “&” or “)"” or are over 60 characters
long, put B$ in A$ and jump to the statement
which checks to see if the line is over or
under 60 characters long. Then proceed
from there.

If B$ is a null line or less than 60
characters long without a “&” or) goonto
block #11 as previously described. If A$
begins with a “)", B$ must be printed, then
AS. If not, B$ is added to A$ (A$=B$+*
"+A$). Then go on to the program line
where A$ is checked to see if it is over or
under 60. Proceed from that line.

Then it asks for the new line, adds the
line number to it and prints it into the error
fite. Moving a line is handled as a deletion
and an added line. A null line edit requests
the line number, puts it into the array and
puts a “1” in the second dimension. Then it
loops back to the edit request statement.

If the editing session is finished, both
files are closed and the program goes to
block #10 to put the array line numbers in
order. If the line number appears in the
array more than once, only the last
appearance is retained with its flag in the
second dimension.

At this point the edit flag, highest line
number, highest array counter number and
the array are stored in a third file. This
permits editing or printing the file again
later. These are the only variables required
to restart the program with an old file.

Now the program starts printing the file.
The first statement is PRINT CHR$(12),
which operates the formfeed of my printer
and sets it to the beginning of the next page.
My paper is perforated every 11 inches to
permit tearing it into standard size sheets for
storage or use.

The line counter is reset to its initial
setting (in M4 case 10). If the edit flag is not
set, the program goes back to block #14.
Otherwise, the array Is checked for any line
numbers less than the current line number
(an added, moved or null line). If one or
more are found, the lowest is used. Then the
array second dimension is checked for a “1”
or “2"”, If there's a ““‘1”, the program prints a

Continued

THREE

Writing Machine Helps
Prepare Manuscripts
Continued

carriage return and goes back to block #11.
ifa “2", it goes directly back to block #11.If a
“0”, it retrieves the line from the error file by
comparing the line number with the
numbers added to each error line until a
match is made. This procedure is followed
through the rest of the error file, using the
EOF to exit. It allows picking up any
subsequent changes to that line.

If the program finds no lesser numbers,
the next line is input from the document file,
using the LINE INPUT #1, A$ statement.
Then its line number is compared to array
numbers to see if there is a match. If so, the
second array dimension is checked for a “2”
or “0”. If “2”, then the line has been moved,
so the program goes back to block #11. If
“0”, then this line has been replaced. So the
matching line number and line from the
error file are retrieved and put into variable
AS. (A$ stores the line to be used in the rest
of the program.) This procedure is followed
through the rest of the error file in case there
was a subsequent change to that line. Then
the program goes to block #15.

In block #15 the now unneeded line
number is stripped off and checked for a
“)_If one is found, the program jumps to
block #17 and prints the line. If there is no
“}” then it goes to biock #16, where the
justification is performed.

The justification routine first counts the
characters in the line. If there are less than
60, it checks for a closing “&" or “)”. If either
is found, the flag is deleted and the line is
printed. If the line is over 60 characters long,
it starts counting backwards from the 60th
character to the first space. Then everything
to the right of the space is put in variable BS,
to the left in A$. Next, it counts the spaces in
A$, dividing up the previous count from the
first space. The justification is performed by
adding the extra spaces to existing spaces
until there are 60 characters in the line. Then
the line is printed and the program goes
back to the beginning, block #11.
MODIFICATIONS

Before making any additions to this
program, | suggest running it as is with a
variety of input lines to be sure it handies all
edited lines properly. One thing — be sure
to clear variables when finished with them.
Don't rely on the next input to rest them,
because that variable might be checked

FOUR

again in some obscure part of the program,
causing a number of problems. If problems
do occur, adding test lines to read the
contents of A$ and B$ will help locate bugs.
Be sure to put the program line number in
the test printout so you can see precisely
where you are in the program. If all else fails,
use the TRON statement to follow the
program. However, it will print an unholy
amount of numbers during the character
scanning routines, sorting routines, etc.

To save time, use integer variables in the
loops. (For example, FOR X%=1 TO M) My
program is about 200 lines long and prints a
justified line every four seconds. If not
justified, the lines print much faster. Try to
get as much accomplished as possible each
time you scan a line, since these scans take
the most program running time. | use only
two scans — one where the spaces are
counted and one where the spaces are
added — to justify the line.

Once this part of the program is
running properly, the following options can
be added: a line counter to start a new page
after 58 lines (or whatever) have been
printed, a statement or two to bring page
numbers at the top of each page, a routine
for single or double spacing lines (don't
forget to add extra blank lines after each
paragraph) and routine to permit printing a
title (and subtitle) at the top of each page,
lower case, etc.

The lines can also be typed on an upper
case only CRT or TTY. Be sure to flag each
jetter which is to remain upper case (l use a
“\’ and then print hard copy on an upper
and lower case printer. Just scan the line
and add 32 (decimal) to each unflagged
alphabetic character to make it lower case.
For example:
Z2=ASC(F$)+32:F$=CHR$(Z2) where F$ is
the character scanned. |f F$ is non-
alphabetic or preceded by a “\", then this
program line can be skipped. The line width
and page length can be varied by setting
them with an INPUT statement.

If you want to add formatting routines,
then all your formatting questions can be put
in between blocks 10 and 11 or at the
beginning of the program. | put all the
instructions in a disk file since they take.up a
lot of memory if included in the program.

My line deletion routine just scans the
first eight characters in the line until a “/”" is
reached. The “/” was added with the line
number. It assumes the next character is the
first character in the line. Keep a count of the
number of characters scanned, then use a

RIGHT$(A$,LEN(A$)-X) statement to delete
them.
SOME DAYDREAMING
One feature | intend to implement soon
will permit editing within the lines. Since i
haven’t been able to figure out how to do this
in BASIC, it probably requires a machine
language program.
Another useful feature would search for
a given word in the text and then change it or
print the line in which it occurs. Altair
BASIC’s INSTR statement is useful for this.
These are just two of many possible
features than can be added to your version.
For a commented listing of my version
of the program with periodic fixes, send
$5.00 to:
Ken Knecht
539 Addison
Chicago, Ill. 60613

Missing Track on
Disk Controller
Board

On the new Altair Disk Controller PC
Board 1, there is a track missing between IC
B1 (pins 6, 7 and 10) and VHJ supplied by
R22. This PC error may cause read errors in
high noise situations, since IC B1 inputs are
left floating.

To correct this problem, connect a
jumper wire from IC B1 (pin 10) to the far
end of R22 (the right end when viewed from
the component side).

This modification applies to both the
Altair 88-DCDD Floppy Disk Controller and
the Altair 88-MDS Minidisk Controller.

GLITCHES
Correction

Please note the following corrections to
GLITCHES “(Window) Program Isolates
System Faults” (May CN, p. 21.)

Table 1
Location Octal Code
000 333 INPUT
001 () data address

In Table 2 location 013, the Octal Code
should be 010.

In Table 3 location 027, the Octal Code
should read 012.

C/N July, 1977

Inverse Assembler Vlakes
Machine Language

By DOUG JONES
2271 North Mill
North East, PA 16428

For every computer and machine-
language assembler that exists, someone
has probably come up with an inverse
assembler. The assembler will put a
program together; the inverse assembler
will pick it apart.

For example, you may want to modify
an object tape or study some of the
subroutines. Unfortunately, a source listing
is often unavailable or it is proprietary
material. The inverse assembler can be
used to translate the binary object code into
symbolic Assembly Language.

Of course, an inverse assembler is no
substitute for a source listing. For example,
the inverse assembiler renders the following
instructions

LDA A ANSW PUT THE ANSWER IN A
REG BEQ NOBRANCH IF ZERO TO NO
as

LDA A $1234

BEQ $3F
This is better looking than B 6 12 34 37 3F,
* but it doesn’t include all the information in
the source code.

The inverse assembler described in
this article is a BASIC language program
that produces the Assembly Language
equivalent of a machine language program.

The inverse assembler is capable of:

1. Inverse assembling the BASIC
interpreter.

2. Inverse assembling itself.

3. Operating on any user program out
of the memory bounds of either the
interpreter or BASIC program.

Although the first two are interesting to
analyze, the third capability is the most
useful.

The following program has two modes
of operation — the IA mode (inverse
assembler) and the T(text) mode. The |A
mode assumes that the data being operated
on is machine op-codes. It gives the
appropriate English language equivalent,
computes bias addresses and shows
addressing modes. The text mode assumes
the same data being operated on is text and
gives the ASCII equivalent of each.

The following summary of the 6800
addressing modes should clarify the
program and its listings.

C/N July, 1977

Programs Understandable

INHERENT/ACCUMULATOR

These are one-byte instructions.

Prints as:
0303 4F CLR A /0/
Since all bytes are not machine op-codes,
an ASCII equivalent, if applicable, is printed
between slashes.
RELATIVE

These are two-byte instructions and
used during conditional branches. The
second byte indicates a positive or negative
direction from (PC + 2). Decimal range is
limited to -128, +127.

Prints as: 0300 33 OF BHI
) $0311 147
The address in parentheses is the relative
branch value. The hexadecimal value
following it is the actual calculated value to
where it will branch.
DIRECT

The second byte contains the operand
address. The addressed value is in the
range 0 A 255.

Print as: 030C D7 71 STAB $71
INDEXED

The numeric value of the second byte is
added to the 16-bit index register. The
combined value points to the operand.

Prints as: 0402 E5 03 BIT B $03,X
IMMEDIATE

The second (and sometimes third) byte
is the operand.

Prints as: 0311 C6)# OC LDA B #$0C
The exceptions to the two-byte rule are the
three-byte instructions CPX, LDS and LDX.
The decimal value of the exceptions are 140,
142 and 206 respectively.
EXTENDED

These are three-byte instructions
where the second and third byte form a 16-
bit extended operand address.

Prints as: 0316 BD 0834 JSR
$0834 /..4/
UNDEFINED

Hexadecimal values that are
unassigned op-codes.

Prints as: 040A 3D * /=y

The following is a brief explanation of
the program operation. Users may wish to
modify parts or use some of these ideas for
a BASIC inverse assembler on a CPU other
than the 6800.

($OF-

LINE EXPLANATION
1-32 Contain the 255 defined and
undefined machine op-codes. An
example of a DATA statement entry is
the following:
3ADDA
where 3 tells the BASIC inverse
assembler that this is an extended
address op-code and that the next
two bytes are to be gathered and
printed. ADDA is the ASCIl coded
string that is to be printed as ADD A.
Establish the IA or T mode. Start
and finish addresses in hexidecimal
are loaded into string variables and
then converted to (decimal) numeric
values.
110-120 The 255 op-codes are put into
string array OP (255).
340-350 Print op-code 1, 3 or 4 letters.
360 Main Main branch, depending on
addressing modes. These
routines fold back into each
other.
O Inherent 370 Final print
statement.
1 Relative 900.370 Calculate
and print branch actual address
from relative value.
2 Indexed 500.370
3 Extended 600.400.370
4 Immediate 700.400.370
5 Direct 800.400.370
390 A check to see if ST, the present
address pointer, has surpassed
the finish address.
2000-2020 ASCII equivalent string loading
of op-code.
2060 Suppresses any print if there is
no ASCII equivalent.
3000-3010 Load string for ASCIl
equivalent.
5000-6060 Complete sub-program for
(Tyext mode disassembly.
9000-9120 Numerical Base Conversion.*
10000-10010 String length adjustment,
prints leading zero.
Check on 3-byte immediate
op-codes.
*BASES, by Matthew Smith, Computer
Notes, August 1976.

50-90

11000-11010

Continued

FIVE

Inverse Assembler VMiakes
Machine Language Programs Understandable

When answering a T to the initial
question, followed by the hexadecimal start
and finish address, the program will be a
text disassembler.

Running text will be noted fluently.
Non-ASCil bytes are printed and noted as
hexadecimal value.

Example data:

54 48 45 20 43 41 54 20 49 53 20 46 41
54 2E FF 00
Prints as: THE CAT IS FAT $2E, $FF, $00

Sample run #2 is rather interesting in
that it is a partial text disassembly of this
simple program. A portion of it is packed by
the BASIC interpreter. These packed words
appear as hexadecimai equivalents. It is
easy to spot the packed values and the text.
Example from the run:

360
ON(V+1)GOT)00370,900,500,600,700,800
Prints as:

$01, $68, $90, (V $A1, 1) $88,
370,900,500,600,700,800$00,

Inverse Assembling a User Program

Let's assume you need an inverse
assembly of a machine language program
that normally occupies a 1000 length
address block of continguous memory from
0000 to O3FF. Load the program in the
normal manner. Then just above 03FF, write
a small relocation program to produce a
copy of the user program at address 4000 to
43FF.

Now load the BASIC interpreter — be
sure to initialize usable memory to
somewhere below 4000. Load and run the IA
BASIC program. The start and {inish hex
addresses will be 4000 and 43FF
respectively.

It's necessary to make mental
adjustments to some of the addresses. For
example: JSR $02AB. This subroutine
actually appears at address 42AB. Actual
addresses need this correction factor.
Relative addresses are calculated correctly
for the off-set.

MSG FCC /THE END/
FCB $0D, $0A
FDB $04 EOT
SIX

Continued
TABLE 1
6800 #BYTES OF BASIC FLAG
ADDRESSING MODE MACHINE CODEINDICATOR
Inherent 1 0
Accumulator 1 0
Relative 2, 1
Direct 2 5
Indexed 2 2
Immediate 2* 4
Extended 3 3
*Exceptions CPX, LDS and LDX are 3-byte
instructions.
RUN

(T)EXT OR (IA)? 1A
START & FINISH ADDRESS (IN HEX)? 300,31A
BASIC INVERSE ASSEMBLER

0300 22 OF BHI ($OF) $0311 1"
0302 39 RTS 19/
0303 4F CLR A

0304 DF 6E SIX $6E

0306 DB 6F ADD B $6F

0308 99 6E ADC A $6E

030A 97 70 STA A $70

030C D7 T STA B $71

030E DE 70 LDX $70

0310 39 RTS 19/
0311 C6 0C LDA B #$0c

0313 7F 0111 CLR $0111

0316 BD 0834 JSR $0834 /.4/
0319 BD 0893 JSR $0893

Sample Run #2

RUN
TEXT OR (1A)? T
START & FINISH ADDRESS (IN HEX)? 2000,3000

BASIC TEXT DISSASSEMBLER
2,($BA, ($BB, ($B9, (ST $A1, 2))) $A2, 1)) $00, '$01, R$8C, 9000: $8C, 10000 $00, $01,
T $95, “ .. $95, $BF, (T$,3); $00, Y $01, $5E, $8A, $BA, (T$) $A9, 4 $9E, $95, “ ; $CO,
(T$,1); $00, $7D, $01, $68, $90, (V $A1, 1) $88, 370,900,500,600,700,800 $00, $9C, $01, $72,
ST $AQ, ST $A1, 1: $8A, A$ $AA, $A8, “ $9E, $95, $9A, 35) :A$; $00, $AB, $01, $7C, $95, :
$8A, FX $AA, ST $9E $80, $00, $B4, $01, $86, $88, 300 $00, $D2, $01, $90, ST $A9, ST
$A1, 1: $8C, 1000: $8C, 10000: $88, 370 $00, $FE, $01, $F4, ST $A9, ST $A1, 102, X $95, “ $*;
$00, I’ $02, $62, ST $AS, ST
BREAK IN 8050
oK

THE BASIC PROGRAM
FORN=1TO50:?CHRS$(0);:NEXT:LIST

1 DATAO*,0NOP,0*,0%,0",0*,0TAP,0TPA

2 DATAOINX,0DEX,0CLV,0SEV,0CLC,0SEC,0CLI,0SEI
3 DATAOSBA,0CBA,0*,0%,0*,0*,0TAB,0TBA

4 DAT)*,0DAA,0*,0ABA,0%,0%,0%,0*

5 DATA1BRA,0*,1BHI,1BLS,1BCC,1BCS,1BNE,1BEQ

6 DATA1BVC,1BVS,1BPL,1BMI,1BGE,1BLT,1BGT,1BLE

C/N July, 1977

7 DATAOTSX,0INS,0PULA,0PULB,0DES,0TXS,0PSHA,0PSHB
8 DATAO0*,0RTS,0*,0RT1,0%,0*,0WAIOSWI

9 DATAONEGA,0*,0*,0COMA,OLSRA,0*,0RORA,0ASRA

10 DATAOQOASLA,0ROLA,ODECA,0*,0INCA,0TSTA,0*,0CLRA
11 DATAONEGB,0*,0*,0COMB,0LSRB,0*,0RORB,0ASRB

12 DATAOASLB,0ROLB,0DECB,0*,0INCB,0TSTB,0*,0CLRB 500 ST=S8T+1:GOSUB1000:PRINT“4”;:GOSUB10000:PRINT* X";:GOT0370
13 DATA2NEG,0*,0*,2COM,2LSR,0*,2ROR,2ASR 600 PRINT“$";

14 DATA2ASL,2ROL,2DEC,0*,2INC,2TST,2JMP,2CLR 610 ST=S8T+1:GOSUB1000:GOSUB10000:GOT0400

15 DATA3NEG,0*,0*,3COM,3LSR,0*,3ROR,3ASR 700 PRINT“#$";:IFFL=1THENFL=0:GOT0610

16 DATA3ASL,3ROL,3DEC,0*,3INC,3TST,3JMP,3CLR 710 GOTO400

17 DATA4SUBA,4CMPA,4SBCA,0*,4ANDA,4BITA 4LDAA,0* 800 PRINT“$";:GOT0400

18 DATA4EORA,4ADCA,40RAA,4ADDA 4CPX,1BSR,4LDS,0* 900 TP=ST+2:ST=ST+1

19 DATA5SUBA,S5CMPA,5SBCA,0* 5ANDA,SBITA,5LDAA,5STAA 910 GOSUB1000:PRINT* ($";:GOSUB10000:PRINT") *;

20 DATASEORA,5ADCA,50RAA,5ADDA,5CPX,0*,5LDS,58TS 920 IFF 127THENF=F-256

21 DATA2SUBA,2CMPA,2SBCA,0*,2ANDA,2BITA,2LDAA 2STAA 930 TP=TP+F

22 DATA2EORA,2ADCA,20RAA,2ADDA,2CPX,2JSR,2LDS,28TS 940 BT=16:BF=10:C$=MID$((STR$(TP)),2,(LEN(STR$(TP))-1))
23 DATA3SUBA,3CMPA,3SBCA,0*,3ANDA,3BITA,3LDAA,3STAA 950 GOSUBS000:PRINT*“$";:GOSUB8000:GOT0370

24 DATA3EORA,3ADCA,30RAA,3ADDA,3CPX,3JSR,3LDS,38TS 1000 BT=16:BF=10:C$=STR$(PEEK(ST)):GOSUB 9000:RETURN

25 DATA4SUBB,4CMPB,4SBCB,0*,4ANDB,4BITB,4LDAB,0* 2000 A$=*/":GOSUB3000:iIFV=00RV=5THENGOT02050

26 DATA4EORB,4ADCB,40ORAB,4ADDB,0%,0*,4LDX,0* 2020 GOSUB11000:D=ST:ST=ST+1:GOSUB3000:ST=D

27 DATA5SUBB,5CMPB,5SBCB,0*,5ANDB,5BITB,5LDAB,5STAB 2050 A$=A%$+/"

28 DATA5SEORB,5ADCB,60RAB,5ADDB,0*,0*,5LDX,58TX 2060 IFA$="/.../"ORA$="/../"ORA$="/./"THENA$=""

29 DATA2SUBB,2CMPB,2SBCB,0*,2ANDB,2BITB,2LDAB,2STAB 2070 RETURN

30 DATA2EORB,2ADCB,20RAB,2ADDB,0*,0*,2LDX,25TX 3000 IFPEEK(ST) 31ANDPEEK(ST) 91THENA$=$+CHR$(PEEK(ST)):RETURN
31 DATA3SUBB,3CMPB,3SBCB,0*,3ANDB,3BITB,3LDAB,3STAB 3010 IFPEEK(ST) 320RPEEK(ST) 90THENA$=A$+“.":RETURN

32 DATA3EORB,3ADCB,30RAB,3ADDB,0,0*,3LDX,38TX 5000 PRINT:PRINTTAB(10);“BASIC TEXT DISSASSEMBLER”:PRINT
40 CLEAR1000 6000 FORK=STTOFX:A=PEEK(K)

50 INPUTY(T)EXT OR (IA);A$, 6030 IFA 31ANDA 91THENPRINTCHRS$(A);

60 INPUT'START & FINISH ADDRESS (IN HEX);C$,T$:PRINT 6040 IFA 32THENC$=MID$(STR$(A),2,LEN(STR$(A))-1):GOSUBE100
80 LETBT=F:C$=T$:GOSUB9000:FX=F:IFFX =STTHENG60 6050 IFA 90THENC$=RIGHT$(STR$(A),3):GOSUB6100

100 IFA$="T"THENBT=16:BF=10:GOT05000 6060 NEXTK:END

110 DIMOP$(255) 6100 GOSUB9000:PRINT* $”;:GOSUB10000:PRINT*, "::RETURN

120 FORN=0T0255:READOPS$(N):NEXT 8000 IFLEN(C$)=1THENPRINT“000";

140 PRINT:PRINTTAB(10);“BASIC INVERSE ASSEMBLER”:PRINT 8010 IFLEN(C$)=2THENPRINT"00";

300 YP=PEEK(ST):V=VAL(LEFT$(OP$(YP),1)) 8020 IFLEN(C$)=3THENPRINT"0";

302 T$=MID$(OP$(YP),2,LEN(OPS$(YP))-1) 8030 PRINTCS$;:RETURN

310 GOSUB2000:BT=16:BF=10 9000 E=):B$="":D$="0123456789ABCDEF":BT=INT (BT):BF=INT(BF):01=1
312 C$=MID$((STR$(ST),2,(LEN(STRS$(ST))-1)) 9002 D=0:02=2:00=0

320 GO$UB9000:GOSUBB000:PRINT* " 9030 FORY=0O1TOLEN(C$):FORX=00TOBF-01

331 C$=MID$((STR$(YP)),2,(LEN(STR$(YP))-1}} 9040 IFMID$(C$,Y,01)=" "THENY=Y+01:GOT09040

332 GOSUB9000:GOSUB10000:PRINT* " 9050 IFMID$(C$,Y,01)=MID$(D$,X+01,01)THEN9070

333 IFV=0THENPRINT* ”;:GOT0340 9060 NEXT:END

334 C$=MIDS$((STR$(PEEK(ST+1))),2,(LEN(STR$(PEEK(ST+1)))-1)) 9070 D=D*BF+X:NEXTY:C$="":F=D
335 GOSUB9000:GOSUB10000:GOSUB11000:FFL:=1THEN337 9080 B$=B$+STR$(INT((D/BT-INT(D/BT))*BT)):D=INT (D/BT)+.01

336 IFV 3THENPRINT* ";:GOT0340 9084 IFD =01/BTTHEN9080

337 C$=MID$((STR$(PEEK(ST+2))),2,(LEN(STR$(PEEK(ST+2)))-1)) 9090 FORX=LEN(B$)TOO2STEP-02

338 GOSUBS000:GOSUB10000 9100 IFMID$(B$,X,01)=" "THENX=X-01:GOT09100
340 PRINT * ":PRINTLEFT$(T$,3); 9110 C$=C$+MID$(D$,VAL(MID$(BS$,X-01,02))+01,01)
350 IFLEN(T$)=4THENPRINT" ";RIGHT$(T$,1); 9120 NEXT:RETURN

360 ON(V+1)GOT0370,900,500,600,700,800 10000 IFLEN(C$)=1THENPRINT“0";

370 ST=ST+1:IFA$ “THENPRINTTAB(35);A$; 10010 GOSUB8030:RETURN

380 PRINT:IFFX SITHENEND 11000 IFYP=1400RYP=1420RYP=206THENFL=1
390 GOTO300 11010 RETURN

400 ST=ST+1:GOSUB1000:GOSUB10000:GOT0370 OK

C/N July, 1977 SEVEN

PUT A MICRO
IN YOUR SCHOOL

Getting Started with Zero Bucks

By Harley Dyk
Math-Electronics Instructor
Mona Shores High School
Norton Shores, Ml 49441

This article first appeared in the June
1977 issue of Kilobaud. Copyright 1977
Kilobaud Publications, Inc., Peterborough,
NH, USA. All rights reserved. Reprinted by
permission.

| was introduced to computer
programming in the summer of 1970 while
taking graduate courses in mathematics at
Central Michigan University. An introductory
course in FORTRAN on the good old IBM
1130 very quickly made an addict of me.
Keypunching all your own cards (the system
was strictly batch) and losing 10 points on
every problem for each time your program
failed to run correctly was quite far removed
from having your own microprocessor in
your basement, but compared to nothing it
was great and | was hooked.
Starting a High School Computer Class
with Zero Bucks

Upon returning to teaching in the fall, |
immediately began looking for computer
time for three reasons. First, if | could so
easily become hooked on programming and
enjoy it so much, why couldn’t (and
shouldn’t) high school students have the
same opportunities and experience? Also, |
felt that any student who wanted to learn the
basics of programming or was curious
about computers should have the
opportunity to be exposed. Last, | needed
some computer time to satisfy my addiction.

My search turned up the fact that our
intermediate school district was the
cheapest source of computer time. Our
school district was paying a fixed amount
per student for scheduling, report cards,
etc. and could use the computer for
instructional purposes at no additional cost.
To make the arrangement irresistible, they
agreed to do the keypunching. Since my
school board favors most proposals that
have little or no cost attached, the fall of
1971 found me teaching a new course called
Computer Math. The FORTRAN language

EIGHT

The way we were — Harley Dyk sitting at the keyboard of the retired Model 26 keypunch.
(Photo by LCDR F. Wayne Brown.)

was used for two reasons: This was the only
language | knew, and the computer center
had a little used FORTRAN compiler on the
shelf for the Honeyweil 200.

Things went as well as could be
expected. In spite of shuffled card decks,
dropped program decks, lost programs,
coding forms returned unpunched,
computer breakdown, Murphy's Law, etc.,
some programming was taught. But who
could complain? The price was right. But
after a year the computer center moved to
new facilities 10 miles away. Consequently,
it was impossible to arrange transportation
of coding forms, have them punched,
program decks run and returned by the next
day. If you think it is bad to wait 24 hours to
find out you used a comma where you
needed a period, try 48 hours! Solution?
Lease a keypunch, find a student to
keypunch, offer her a credit in keypunching
and presto, back to 24 hour turnover.

Unfortunately, the computer center was
not on my route home, and as time went on,
finding someone to pick up and deliver
cards twice a day became more difficult and
expensive. We were now spending about

$150 a month on the keypunch, card
delivery and cards. The only good thing
about our setup was that we had no limit on
how many programs we could run each day.

It seemed like a logical time to begin
thinking about and examining alternatives.
Was something better available for $150 a
month? A check of high schools in the area
fielded the fact that one high school had
decided that buying a computer time via
phone line and Teletype was getting too
expensive and had leased a $14,000 DEC
PDP-8 with two Teletypes on time-sharing
but at considerably more than $150 a
month.
Dream

January, 1975 — enter the Altair 8800
computer via Popular Electronics. |
wondered if there really was a garage in
Albuquerque where this invention was being
put into producton. September of 1975
tound me researching what was available
for use in teching my class. At this point |
was convinced that we needed and could
afford our own system. My goal — to get a
computer system in my room by September,
1976 no matter how much work and time it
took.

C/N July, 1977

-

Computer Math student Sheila Beaver at Teletype and Altair 8800A. (Photo by Gary Reed.)

Conception

After seeing a DEC Classic and PDP-8
in action at other schools and attending the
MITS Computer Caravan, | wrote a proposal
for my school board to act on. My proposal
outlined my rationale and presented three
systems: the DEC Multiuser/11V03 at
$20,000 (four simultaneous users — three in
BASIC and one in FORTRAN if desired), the
DEC Classic with mark sense card reader at
$17,000 (FORTRAN and BASIC) and two
Altair 8800s at about $7,000 (BASIC only).
Difficuit Pregnancy

| gave the superintendent the proposal
in January of 1976 and was scheduled for
the March 8th board meeting to present my
ideas. Unfortunately, three board members
were out of town for the meeting and the
other four did not feel adequately familiar
with my proposal, so it was tabled until

C/N July, 1977

March 22nd when hopefully all members
would be present for a more fruitful
discussion. The March 22nd meeting was
more productive, but still it was obvious that
no one really had an idea how
microprocessors were being used in high
schools. My proposal was eventually tabled
indefinitely — the money situation was not
clear at that time and a millage (tax
adjustment) election was coming.

The next few months found me
educating my principal and assistant
principal and later the school board
president (an engineer familiar with
computers). | simply took them to a high
school that was using a DEC Classic
configuration and exposed them to the
enthusiastic instructor and students.

June brought a millage defeat and a
last ditch effort. | rewrote my proposal,

eliminating the more expensive DEC
systems and asking for the Altair system.
Having originally approached the school
board with options was fast becoming a wise
decision, because the least expensive
option was becoming more acceptable.
Since | had written my original proposal,
MITS had introduced the 16K static memory
board, impraved the 8800 and Michigan
now had its first computer store in Ann
Arbor. | also had the chance to talk to a
couple of Altair owners and was convinced
that it could do what we needed. | mailed
copies of my new proposals to the board
members and superintendent and waited.

About the middle of July (a new
superintendent had assumed his duties July
1), | received a phone call indicating that
some money had been located and that |
should come in for further discussion. July

Continued

NINE

PUT A MICRO IN YOUR SCHOOL
Getting Started with Zero Bucks

27 found me at a third board meeting. Now |
found out that had the administration and 1
come with a recommendation to buy a
$20,000 system, we probably would have
been given approvai. But we were proposing
the Altair system and were given an OK to
proceed, pending a checkout of MITS and
the local store. They checked out fine.
Finally, on August 5th, | grabbed the phone
and ordered our computer system (before
anyone could change their mind). The order
was for two Altair 8800As, each with 16K
static memory, serial I/0 board, ACR board
and RQ-413 Panasonic recorder. One
computer was to have an ASR-33 Teletype
(for needed hard copy) and the other an
ADM/3 Lear-Siegler CRT. We also ordered
8K BASIC, Extended BASIC and a supply of
Maxwell UDXL C-60 cassette tapes. Total
cost was about $7000.

While waiting for the system, the
Computer Store rushed me the BASIC
manual, and | boned up, since | had not
written any programs in BASIC. There was
no real need for panic — school was not to
start for at least four weeks. | found the
transition from FORTRAN to BASIC very
natural, easy and enjoyable. The fine
manual on MITS BASIC helped a great deal.
| doubt if switching from BASIC to
FORTRAN would be as painless.

Birth

Our system was tentatively scheduled
to be delivered September 1, but the
Computer Store was experiencing labor
(growth) pains and was not receiving
shipments from MITS when expected, so
birth was not quick and painless. The fact
that | am three hours from the Computer
Store did not help either.

The Teletype™ was the first item to
arrive. | had ordered the ASR-33 directly
from the Teletype Corp., from whom I
received excellent cooperation. The
Teletype was delivered to my room at school
exactly 28 days after | had phoned in the
order!

Labor Day found me picking up the first
computer (sweet labor!) from a brother-in-
law of the store owner. He had just come
back from Ann Arbor and was only about 45
minutes from me. The store had still not
received any assembled units so had sent
me their demo and were assembling a kit for
me. The next week found me furiously

TEN

Continued

Computer Math student Mark
Tietsort at CRT and Altair
8800A. (Photo by Gary Reed.}

programming in my basement by night while
we began a week long unit on flowcharting in
my class. The keypunch machine was still in
my classroom, but we ignored it.

In late September the Computer Store
put on a demonstration in my room for area
high school instructors, showing the 8800A,
8800B, 680, disk, etc. | was supposed to get
the second computer then and keep the
demo so | could be totally up and running.
However, a bad ACR board prevented this.
A few weeks later the second system was
delivered (students had been saving
programs on cassette from the CRT
computer). However, this ACR board would
not allow us to save programs, only load
them. At least we couid load BASIC and load
programs from the other computer and use
the paper tape feature of the Teletype to
save programs. Some time later we got
another ACR board and were totally up and
running. Birth was complete!

Early Childhood

In spite of a difficult pregnancy and
birth, early childhood has made it all
worthwhile. Once our system was complete,
we had no hardware problems. | have
loaded and saved hundred of programs on
cassette and have had only one failure which
may have been due to my error. The
computers are left on all the time (the
terminals are turned off at night) so that
loading Extended BASIC (which takes from
8 to 10 minutes) does not have to be done
each morning. Occasionally, BASIC may
start acting strange or die, so each
computer is loaded probably on an average
of every two or three weeks. We have been
using Extended BASIC Ver. 3.2 which gives
us 5984 bytes for programming and 100
bytes for string space. This is adequate

memory for most programs, but some
games written by my students could have
used more memory. | am sure that if we had
64K someone would still complain! We have
found a few flaws in the Extended BASIC
Ver. 3.2, but they are nothing that we
couldn't program around. The flaws should
be fixed in the 4.0 version, which we have on
order.

The computers are housed in a 10’ by
10’ office adjacent to my classroom, so
programmers can come during any hour
without bothering the class in session. They
have been used an average of five hours a
day. It was decided to try time and material
for maintenance on everything except the
Teletype, on which we have a service
contract for $216 for the nine month school
year.

| was always under the impression that
FORTRAN was a more powerful language
than BASIC, but | have been able to do all
my oid FORTRAN programs in MITS BASIC
and am very impressed with it. Some
programs took more steps in BASIC, but the
majority were easier to do in BASIC. | am no
longer a member of STAB (Society to
Abolish BASIC); as a matter of fact, | think
STAB is dead.

The students love the computers; two
or three of them are seriously considering
purchasing their own system. One student
has one on order for graduation. He thinks it
is great that computers cost less than new
cars, but he laments the fact that he can not
take his girl out in a computer. The
computers have been in such demand that
the students created a number system to
determine whose turn it was to work on the
computer.

C/N July, 1977

Conclusion

The main reason | wrote this article was
to urge hobbyists (who may also be parents)
to begin insisting that their junior high and
senior high schools have computer classes
and facilities. Many teachers (particularly
math teachers) have had some education in
programming but are not familiar with the
cost and capabilities of microprocessors. If
you fall in this category, get off your duff and
get your hands on a microprocessor. Find
out if you can appropriate a coupie of
thousand for a system for your class. It's
worth the effort! You will wonder why you
didn’t do it before. True, a system will cost
less next year, but it is affordable now. Can
you put a price on the education this year’s
students will miss—

Hobbyists, help that teacher get
started. Maybe he is hardware shy, maybe
he would be ready to move if someone in the
community would be willing to help him get
a system up and running. You can now buy
a system (decent quality by my estimation)
with 12K memory, 8K BASIC, connected to a
keyboard, 16 line with 64 character video
monitor and cassette for under $1300. True,
the computer itself is in kit form. But again,
find someone to help; help is availabie if you
look, or better yet, put it together yourself.
With some assembly (maybe 50 hours), you
should be able to set up two systems, one as
above, another like it but with a Telstype for
about $3000. You could provide 4000
student hours on a computer in two years —
not bad at less than $1 per hour!

Our baby is healthy, but my students
have indicated Iin a recent survey |
distributed that he must grow. They think we
will need at least another terminal or system
next year (due to increasing interest and
more students in the class). We could use
faster hard copy, and a floppy disk would be
very useful. OK, where are the catalogues?
Hm ... time-sharing, line printer, floppy
disk, Dec-Writer Il, mora memory ... Say,
when is the next board meeting?

C/N July, 1977

GLITCHES

Spot Altair

88-PMC Problems

By Bruce Fowler
MITS

To use MITS Altair PROMs, they must
be installed in a working Altair PROM
memory board. Occasionally, an 88-PMC kit
board may create problems for the user.
This article gives a few hints for tracking
down and eliminating 88-PMC problems.
Troubleshooting:

First, measure the output of the +5v
and -9v voltage regulator on the 88-PMC
board. If the voltages are incorrect, lift the
output pin from the board and measure
them again. If correct, look for shorts.
Replace the voltage regulator if the voltages
are incorrect.

The remaining problem areas for the
88-PMC board can be divided into four
areas: (1) the chip select circuit, (2) the VGG
switching circuit, (-) the PROM circuit and
(4) the wait state circuit. Each area is
described in detail below.

CHIP SELECT CIRCUIT:

Since 8 PROMs can be mounted on
one board and the data outputs of all
PROMs are in parallel, some sort of chip
select circuit is necessary to enable only one
PROM at a time and disable the other seven.
This is done by applying a TTL low signal on
pin 14 of the PROM to be enabled. A PROM
is disabled by applying a high signal to pin
14. Depending on address bits A8-A10, the
chip select circuit applies a low signal to one
of the 8 PROMs, ICs A-H. To test and fix the
chip select circuit, do the following

1. Examine the first memory location of
the board from the front panel. BS
(board select), pin 9 of IC K, should
go low and stay low. Otherwise,
check to see that IC K is working and
that the address strapping jumpers
are correctly installed.

2. Keeping address bits A11-A15 the
same, change bits A8-A10 and ex-
amine the resulting locations.
Monitor pin 14 (chip select) of the 8
PROM sockets (ICs A-H). The TTL
levels shouid correspond to those in
Table 1. If a discrepancy is found,
look for shorts and opens. Pull up
the suspected output in pin of IC J

(pins 9, 10, 11, 13, 14, 15, 16, or 17)

and recheck it with Table 1. If still

wrong, check IC I. If {C | operates

correctly, replace IC J.

3VGG SWITCHING CIRCUIT:

To save power, the power to 1702
PROMs is reduced when they are not
selected. This is done by putting +5v on pin
16 (VGG) of the 1702A PROM for the
reduced power state dn-9v on pin 16 for the
active state. The VGG switching circuitry is
tested in a similar manner to the chip select
circuit. However, not that two PROMs wiil
have -9v supplied to them simultaneously
for an active VGG. To test the VGG circuit,
do the following:

1. Redo step 2 above using Table 2

while monitoring pin 16 (VGG) of the

PROM sockets (IC A-H).

2. For any invalid VGG level, examine

the corresponding circuit for it. The

VGG switching circuit for PROMs A

and B is shown in Figure 1. All VGG

switching circuits are similar.

a. A low at either diode cathode
should produce about 4.2v at the
base of A1. Otherwise, replace
diodes D1 and D2 if no shorts or
opens are found. if no lows are
present at either diode cathode,
then transistor Q1 base should
be about +5.2v. Otherwise,
replace D1 and D2 if no shorts
can be found.

b. The 4.2v voltage at the base of
Q1 should turn on Q1 producing
about 5v at the collector of Q1.
Otherwise, replace Q1 if no
shorts or opens are found. If no
lows are present at either diode
D1 or D2 cathode, transistor Q1
coilector should be about -9v.

c. The 5v at the Q1 collector should
turn on transistor Q2, causing
Q2's collector to go to -9v.
Otherwise, replace Q2 if no
shorts or opens are found. The

Continued

ELEVEN

GLITCHES

Spot Altair 88-PVIC Problems

Continued

voltage at transistor Q2’s collec-
tor should be about 5v if no lows
are present at either D1’s or D2's
cathodes. Otherwise, check
resistor R3’s resistance and look
for shorts. If these are satisfac-
tory replace Q2.

2. Stop the computer and examine the

first location of the PROM board.
Compare the TTL levels on the
board with Table 4 for the stopped
state. Check logic operation of any
gates whose outputs disagree with
Table 4.

pin 12 of IC S. If not, check these
gates. Don't forget to replace J6 and
J7.

4, To check the other ICs, run the
program in Table 3 while checking for
proper logic signals at the gates.
Make sure the signals match the

PROM CIRCUIT 3. To check the logic operation of IC P description in the Altair 88-PMC
To check the PROM circuit, a listing of and S, remove jumpers J6 and J7. Theory of Operation Manual.
the data in each PROM is needed. Examine Activate the Run switch on the front This information should at least give the
the PROM locations and compare the data panel and then the Stop Switch. 01 kit builder a start. For further help, please
lights which represent the PROM output (a 2 Megahertz singal) should be contact MITS or the Repair Department of
data with the listing. A11-A15 must present at pins 8 and 12 of IC P and your nearest Altair Computer Center.
correspond to the Prom Board’s address.
If any locations do not match the listing,
then the most probable causes are shorts or
opens on the data or address lines on the Table 1
back of the board. Trace out these lines very Sockets, pin 14
carefully. Check power and ground A10 A9 A8 A B c D E F G H
conductors to the PROMs. Data buffers IC V LOW LOW LOW LOW HIGH HIGH HIGH HIGH HIGH HIGH HIGH
and W should be enabled by a low at pin 1. LOW LOW HIGH HIGH LOW HIGH HIGH HIGH HIGH HIGH HIGH
Compare the input with the output for these LOW HIGH LOW HIGH LOW HIGH HIGH HIGH HIGH HIGH HIGH
buffers to make sure they are the same. LOW HIGH HIGH HIGH HIGH HIGH LOW HIGH HIGH HIGH HIGH
WAIT STATE CIRCUIT HIGH LOW LOW HIGH HIGH HIGH HIGH LOW HIGH HIGH HIGH
The Wait State circuitis alittle harderto yigH LOW HIGH HIGH HIGH HIGH HIGH HIGH LOW HIGH HIGH
troubleshoot. Since the PROM access imeé HiGH HIGH LOW HIGH HIGH HIGH HIGH HIGH HIGH LOW HIGH
is too slow for the memory read time sup- HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH LOW
plied by the 8080A, wait states are forced by
the PROM board to add on extra clock
periods (500nsec for each period) to the Table?
memory read time. The PROM board A10 A9 A8 A :ockets,cpm 16D E e G H
generates a wait state by pulling Ready low
during period 2 of the read cycle. If Ready is tga tgx h?c;/\:{ ::\\; :gz 23 Zz gz Z\\; zz gz
low when the 8080A samples it with 02, the
8080A waits one clock period and then sam- LOW HIGH ~LOW 5V v -9V -9V sv 5V sV 5V
ples Ready again. When Ready goes high, LOW HIGH HIGH 5V 5V -9V -9V 5V 5V 5V 5V
the 8080A completes the machine cycle. If HIGH LOW LOW 5V sV ./5V/ 5V -9V -9V 5v 5V
no wait state occurred, the 8080A would get HIGH LOW — HIGH 75v/ 5V /5v7 SV -ov -9V sV sV
invalid data from the slow PROM. Jumpers | lor HIGH LOW v sv.. sv. 5V SV 5V /-9V/ /-9V/
HIGH HIGH HIGH 5V 5V 5V 5V 5V 5V o9V -9V

J6 and J7 are usually strapped for 1 wait
state fro the 1702 PROMS. Regardless of
how they are strapped, jumpers must be
present for at least one wait state. To check
the wait state circuit and repair it, do the fol-
lowing:

1. Strap the board for the highest pos-
sible location (174000 octal) and run
the program in Table 3. Monitor pins
13 and 14 of IC W. If low pulses
(about 500nsec wide) do not occur,
then no wait states are being
generated by the PROM board.

*Valid only if examinging PROM board’s address.

TWELVE C/N July, 1977

Extra Voltage Needed

Using the TTY (20mA loop) interface with the Lear Siegler ADVI-3A
CRT terminal and the Altair 680b computer requires additional voltage to
the interface circuit. The following diagram illustrating this connection
was contributed by Bob Burnett of the Houston Altair Computer Center.

23
680 17 ADM-3A

i 24 |4

< <<

& t 25 | &

w L

@ 2 7 g

0 uH

o~ N

Software Winners
Table 3 d
Location Op code Announce
000 072 Move to ACC The following are software contest
001 000 data from winners for submissions in March, April and
002 377 PROM May, 1977.
003 062 Store in Best Programs
004 040 Location 040 First Place #7014
005 000 Title: Complex Number Interpreter for
006 303 Repeat BASIC
007 000 Author: Dr. John J. Herro
010 000 Dayton, Ohio
Table 4 Second Place: #7009
IC Pin Stopped State* RUN State Title: Checkbook Balancing Program
K 9 LO pulses Author: Loring C. White
S 4 Hi pulses Reading, Mass.
\ 1 LO pulses
w 1 LO pulses
w 15 LO pulses cOmputer
S 2 01 01
s 8 Lo pulses Club Formed
S 10 HI HI
L 3 02 pulses The Canadians recently formed a new
M 6 HI pulses microcomputer club. For more information
P 6 Hi pulses contact:
P 12 LO pulses Mr. Gerard Bouchard
P 8 HI pulses Dept. Electro . o
M 3 LO pulses College de ChICOUtImI.
*Valid only if Board Location is examined. 534, rue Jacques-Cartier est
Chicoutimi, Que

C/N July, 1977 G7H 125 THIRTEEN

ALTAIR COVIPUTER CAPABILITIES
SHOWCASED AT NCC

(All photos by Steve Wedeen.)

MITS Dealer Sales Manager Dave Carey
| keeps things running smoothly at the Altair

computer booth. Thousands of enthusiastic con-
ventioneers saw the versatility of
Altair computer systems demon-
strated at the NCC in Dallas, June
13-16. The MITS booth featured
Altair Timesharing BASIC, Altair
Industrial and Scientific control sys-
tems and the Altair Business System.
The interest generated by these
complete, yet affordable systems
clearly established the Altair com-
puter as much more than just a
personal computer.

Pam Duran, head of the MITS Technical Several new Altair peripherals
Writing Department, was a familiar face were also introduced at the NCC,
T e including the Altair Hard Disk, Altair
answered questions about Altair computer Mm'_d'Sk' Altair AD/DA boardv a d'ag°
~ products for thousands of interested nostic card and a 16K memory board.

conventioneers.
— LR
Information

mente, this pow:

D acrca) aiernwiive 10 ibrger. more coaty

T yystems

Grey Hodges, Altair Computer Center owner
from Charlotte, North Carolina, explains Wall map displays location of 23 Altair Computer Centers.
how to load Altair Timesharing Disk BASIC.

FOURTEEN C/N July, 1977

MITS software specialist
MITS founder Ed Roberts (center) meets with Chuck Vertrees demonstrates
MITS General Manager Eddie Currie (right) the versatility of
and MITS Vice-President of Engineering Pat Godding. Altair Timesharing BASIC.

=
MITS Vice-President of Advertising
Andrea Lewis watches a demonstration
at a nearby booth.

MITS engineer Ron Scales demonstrates

the use of Altair AD/DA boards
on the Altair "bionic wall”

C/N Jduly, 1977

FIFTEEN

Computer

Courses
Offered

Beginning this fall, St. John’s
University, Jamaica, N.Y., is offering a series
of intensive short courses on low-cost
personal computing. Each course provides
a well-rounded body of information on
successful implementation and use of small
computer systems. Information on both
hardware and software design as well as
numerous applications of personal
computing in education, recreation,
business, etc. is also included. No computer
expertise is required.

The first course will meet Tuesdays, 6-8
p.m., September 27-October 18. The cost is
$20. The following list is a partial course
outline.

1. OVERVIEW OF PERSONAL
COMPUTING: What is a personal
computer (PC)? PC systems
analysis.

2. DESIGN OF MiICROCOMPUTER-
BASED SYSTEMS: General and
functional systems design,
hardware design (interfacing CPU,
memory, peripherals, etc.) software
development (assembly and high-
level languages).

3. IMPLEMENTATION OF PC
SYSTEMS: How to acquire PC
hardware and software, how to
develop PC applications, analysis of
the “buy or make” decision.

4. PC APPLICATIONS: Microcomp-
uter-based information and
business systems, personal man-
computer problem-solving and
decision-making systems, a low-
cost PC-based investment decision
system, and the PC as the user’s
intelligent problem-solving
assistant.

5. THE PC INDUSTRY: Effect of the PC
revolution on the computer and
information industry, new business
opportunities in personal
computing.

6. LOOK INTO THE FUTURE

For further information contact:

Dean Patrick Basilice

Evening Division

St. John's University

Jamaica, NY 11439

(212/969-8000, Ext. 101)

SIXTEEN

Altair 680b
Requires
Phase 2
Clock Mod

By Ron Scales

The Altair 680b main board supplies 02
clock to the system bus through CMOS
4050 buffer. This butfer allows multiple
board operation without overloading the
MPU 02 clock. It has a propagation delay of
approximately 100ns on the high to low
transition, which is the clocking edge of 02.
This causes only one problem in the Altair
680b.

When using a Turnkey 680b with a
parallel port of the Universal 1/0 card,
control of the 6820 PIA is impossible
because of the falling edge of the 02 clock
signals on the Data lines. The regular front
panel provides enough load to delay the
address and data signals for proper timing
relationships. But the Turnkey front panel
has no effect upon the address and data

lines, so the falling edge of the 02 clock

occurs too late relative to the Data bus
signals.

To fix this problem, cut pin 4 of I.C. PP
where it goes into the PC board. Then lift it
up out of the way and jumper the pad 4 to
pad 5 on the PC board. This connects the
MPU 02 to the bus and removes any delay
caused by the CMOS 4050 IC. This
modification works with all versions of the
Altair 680b computer and all combinations
of plug-in PC boards for the 680b.

Cartrivision Color VTR

Includes cabinet and removable test rack.

$325.

Video Monitor

$75

Console

Heath Kit Station Console Model SB-1. $70.

Altair 8800

Barely used, 8K memory, serial |/0, cassette

interface, includes documentation.

$1395.

Contact: Norm Nason,

8608 Lvueline Ave., Canoga
Park, CA 91306, (213)-341-
1275

Correction

FOR SALE:
Altair 8800
Unused, fully assembled and factory tested.
$450 or best offer. Call Dave (evenings):
(515)-279-3683.
P-7440 Programmer
Unused, fully assembled. Contact: Steve
Jacobus, 5§ Ruppell’'s Road, Clinton, NJ
08809
Altair 680b
Partially built, $395.
TV Terminal lit
Includes computer and manual cursor,
screen read, UART serial interface, 2K
memory, power supply, ASCIlI keyboard,
audio cassette inte-face and enclosure.
$300.

CONTINUED

Classified
Ads

The following lines should be
added to the program “Circuit Anal-
ysis Applications Expanded to Run
with Altair BASIC” (p. 14 + June,
CN). These corrections were pro-
vided by Doug Jones, 2271 North
Mill North East, Pa. 16428.

521 ONTT GOTO 520, 510,
540, 5609, 1460 IF PR AND
1924 THEN GOSUB 2550,
214Q PRINT “"GM. BRANCH";
CL()+1; “TO BRANCH,;
RW({l)+1: GOTO 2170

As a result of the above modifi-
cations, the output of the sample
program will be slightly different.
The "Equivalent Current Vector"
(p. 21) will be the second item of
output.

There will also be an extra line
of output under "Branch Currents”
(p. 20).

Branches 5-6 4.53E-03

4 446E-03

The last item in the “Branch Cur-
rents” line 1-4 will be 7.34E-05.

With these corrections the pro-
gram will run on an Altair 8800 a
or b. However, the following addi-
tional changes must be made for
the program to operate properly
on an Altair 680.

Using the Text Editor, remove all
constants. These must be replaced
with their numeric equivalents.

Example: Line 89 K3=3:

K4=4: K5=5 etc.

Replace K3 with 3, K4 with 4
etc. These changes must be made
throughout the entire program, with
the exception of line 60Q; it is part
of a string and should not be altered.

C/N July, 1977

Setile for Less

—Less waiting in line for that one
dogeared copy of Computer Notes
that has been passed around until
it is ready to fall apart.

—Less anxiety about missing an
issue and having to depend upon
the charity of others.

—Less money. It costs you less

to subscribe.

Settle for fewer hassles all the way around
by having CN delivered flat, protected by an
envelope, directly to your mailbox every month.

computer —
(“notes | ES)
2450 Atamo S.E.
Albuquerque, New Mexico 87106

Please send me a 1 year subscription to Computer Notes.
$5.00 per year in U.S. $20.00 per year overseas.

NAME:
ADDRESS:
CITY: STATE: zip

COMPANY/ORGANIZATION

0O Check Enclosed 3
O Master Charge MC or BAC/Visa #

L 0O BankAmericard/Visa Signature)

Computer Notes is published in Albuquerque
by MITS, Inc., the altair™ people.

