©
Q
S
]
2
™
o
£
=2
O
>

Memory for $360

Unbelievable, but true —a 16K dynamic
memory board breaking the $400 barrier. And
who would you most expect it from but MITS.

The Altair 88-16MCD offers many
outstanding features at a price usually
associated with budget products. To begin with,
the 88-16MCD can be used in any Altair Bus

p with full patibility. All refresh
circuitry is located on the PC board and
receives timing pulses from the CPU. Logic

synchronization is crystal-controlled a
continuous (no wait states). As with all I
plug-in boards, the 88-16MCD.cé#Sumes little
power (2.5 watts) and is accessed quickly
(RAM access is 350 nanoseconds).

Memory expansion is no longer an expensive
proposition when adding the Altair 88-16K
Dynamic Memory Board. Build it yourself for
$360% or let us do the honors at+$395*

Either way, it’s the best deal in town.

mnts

a subsidiary of Pertec Computer Corp.
2450 Alamo S.E.

Albuquerque, New Mexico 87106

(505) 243-7821

*Prices may vary depending on dealer location

SUBMITTAL SPECIFICATIONS

Articles submitted to Computer Notes should be
typed, double-space, with the author's name, address
and the date in the upper left-hand corner of each numbered
page. Authors should also include a one-sentence auto-
biographical statement about their job, professional title,
previous electronic and/or computer experience under
the article's title. Authors should retain a copy of each
article submitted.

All illustrations, diagrams, schematics and other graphic
material should be submitted in black ink on smooth white
paper. Prints and PMT's are acceptable. No pencil draw-
ings unless properly "fixed! No halftone or wash drawings.

All artwork should be mailed flat, never folded. Unless
requested, graphics are not returned. Sketches, roughs
and "idea" drawings are generally not used.

Photos, charts, programs and figures should be clearly
labelled and referred to by number within the text of
the manuscript.

Only clear, glossy black and white photos (no Polaroid
pictures) will be accepted. Photos should be taken with
uniform lighting and sharp focus.

Program listings should be recorded with the darkest
ribbon possible on blank white paper. A paper tape for
each program submitted must also be included.

Editor, COMPUTER NOTES, MITS, Inc.

© Pertec Computer Corporation
(Volume 3, Issue 6, November)
2450 Alamo S.E., Albuquerque, New Mexico 87106

COMPUTER NOTES is published monthly by MITS, Inc., 2450 Alamo SE, Albuquer-
que, NM, 87106, (505) 243-7821. A free year's subscription is included with every
purchase of an Altair™ computer. Regular subscriptions can be ordered from the MITS
Customer Service Dept. for $5 per year in the U.S. and $20 per year for overseas. Single
copies are available for 50¢ each at all Altair Computer Centers. Entire contents
copyright, 1977, MITS, Inc. Send articles, questions, comments and suggestions to

S

Compose Yourself with the New

By Thomas G. Schneider
MITS

Through the gray gloom and the mid-
night mist swirling around the gnarled
branches of long-dead vegatation, the
castle loomed dark and foreboding on the

_edge of a huge cliff. I viewed the scene .|
with some apprehension, but called to the
driver to move on. When the ancient creaky
carriage finally rumbled into the cobble-
stoned courtyard, I thought that 1 heard
swells of medieval organ music booming
ominously through the stone walls. ‘‘How
gothic,”” 1 quipped to myself, jumping
down from the carriage and peering suspi-
ciously at the ‘““KILOBAUD Sold Here”
sign in the window.

Approaching the heavy wooden door
with large brass knockers, I had a funny
feeling of deja va. Hmm. Maybe it was -
that Gene Wilder movie about monsters I
had seen recently. Just then the door
opened abruptly, and a black-cloaked
gentleman with pointed teeth appeared.
Bowing, he introduced himself as the count,

‘““You’ve probably heard this line
before,”’ he said in a slow, thick accent,
‘“‘but, good evening. Welcome to my
castle. Your rooms are awaiting. Dinner
will be served at 8:00. Afterwards, we will
give the demonstration,”” he said with .a
ghoulish smile as he turned to leave.

continued page 2

Altair 88-MU1

Editor - - -
Andrea Lewis
o e In this issue
Linda Blocki
:Iro':uéllon Compose Yourself Withthe New Altair* 88 MUTcovvvrivinrenn.. 1
h
Susa‘; Balu(r)':enthal Increase Data Storage Up to 80Mcciivvviieninenennin.. 3
Tom Antreasian Z-80 CPU Increases Processing Capabilitiesc.c.... 5
C_F;:)";“;:'G Schneider Altair™ 88-16MCD Compatible With 8800A 5
Bennett Inkles Use The Interrupt Vector In
Susan Blumenthal Single-Level Interrupt Systemscoiiiiriiniiiniineininnns 6
Robert Lppez Floppy Disk: Does Your Drive
?Leve Grider Buzz During A Mount? i 6
Gacl)emgcs:hg‘r‘:;::gn Program Allows Disk Timesharing to
Gary Runyon Read Non-Timesharing Diskettesc.covvivnvnennnennnnns 7
Lee Wilkinson Practical Programmingottt 8
Doug Jones Letter Writing Program Solves
ggnl lwetcht Photographers Mailing Problemsccocoiiiiiiiiinen.., 9
atson
y Trace Program Simplifies Debugging For Altair™ 680 10
Destroying Klingons Can Be Music to Your Ears 16
Qmﬁ'@@mc 1977 String Character Editing Routine Runs in BASICcovuvun... 20
a subsidiary of P - . Computer Evaluates Human Logic: Generalized Version of
y of Pertec Computer Corporation “Master Mind” for Computers 23
2450 Alamo SE, Albuquerque, NM 87106 Master Mind” for Computers ...
’ ’ Audiosyncracies 27

*Important Note On Page 19

CN/November 1977

One

As 1 prepared for dinner, I wondered
what he had in store for me. Strange man,
this count . . .I couldn’t help but think I
knew him from somewhere else. Oh well,
the demonstration would be interesting.

After a delicious repast of undeter-

mined substance, the count led me down a
wooden cobwebbed stairway to what I

assumed could only be the dungeon.
“Don’t mind the bats,”’ he said. ‘‘They
give the place character.”’ He fumbled with
the heavy iron padlock and pushed against
the old dungeon door. My heart raced.
Finally, the door gave way and slowly
creaked open to reveal an amazing spec-
tacle.

I had expected to see an immense pipe
organ of the kind usually seen only in well:
preserved European cathedrals, but 1 was
wrong. Occupying all four walls of the
dungeon and reaching almost to the ceiling
was the largest collection of sound equip-
ment I had ever laid eyes upon. Completely
covering three walls were woofers, tweet-
ers, midranges, folded horns, ring radia-
tors, and all sorts of sound reproducing
devices. The fourth wall was obscured by
racks and racks of high-power audio ampli-
fiers, tape machines, equalizers, and other
audio processing equipment. ‘‘Listen care-
fully,”” he said, flipping up a bat-handle
toggle switch.

The machinery clicked, popped, and
buzzed for several mintues before I finally
heard what 1 had come all this way to
experience. Emanating simultaneously
from hundreds of speakers came the most
musically precise rendition of Johann
Sebastian Bach’s Toccata and Fugue in
D Minor that 1 had ever heard. Every
massive chord, every subtle passage was
accurately reproduced. But from where???
None of the tape machines were running...
something strange was going on here. As
strains of the Fugue floated through the
dungeon I asked the count how it was all
done.

““Very simply,’’ he replied, pointing to
an object in the corner.

““An Altair? What are you doing with
an Altair? Counting bats?!”’

“Let’s not be silly, my good man,”” he
said, somewhat miffed. ‘‘Nowadays,
what self-respecting vampire would be
without a computer? Besides, how else
could I make such splendid music?”’

“You must be joking. How can a
microcomputer do all this?"’
““Very easily,”” he said. ‘‘Since my

friends at MITS came up with the 88-MU1
and the MOS-DOS software for composi-
tion, I can play just about anything using
my Altair!”’

Two

““Tell me more,”’ Iimplored.

“Very well,”” he sighed and provided
me with the following information.

The Altair 88-MU1 is a polyphonic six-
channel note generator card. With it, the
user can generate, under complete soft-
ware control, six independent musical
sequences all running simultaneously in
real time. The 88-MUl1 comes with a
sophisticated, high-level software package
with full composition and editing capabil-
ities. It also includes output connectors
designed to connect to most stereo ampli-
fiers. The software package will run in any
Altair disk system with at least 16K of
memory.

line. These characters will control such
functions as envelope shaping, filtering,
and vibrato effects. After all channels of
the composition have been entered, the
composition can be played at a variety of
tempos determined by the user.

For those users desiring musical
effects, the 88-MU1 can also be easily
accessed by user routines written in mach-
ine code. Figure 1 shows what the 88-MU1
looks like to software. The base address
can be set from 0 to octal 360 in increments
of 16. For even more flexibility, the

88-MU1 can accept two external signals:
one is the reference frequency for the

il l il

Altair™ Note Synthesizer Board (88-MU1)

Composition using the 88-MU1 soft-
ware is simple. The software allows the
creation of six independent text files which
can be saved and recalled from disk. Each
group of six files can be given a common
name up to eight characters long. The 88-
MUT1 software also incorporates a powetful
text editor for listing files, inserting or
deleting lines, and renumbering files.

Listing 1 is a sample listing for one
channel of a six-channel composition.
Each line contains three fields describing
note, octave and timing parameters. For
example, line 1 specifies a C note in the
fourth octave lasting 1/8 of a second. Line
2 specifies a D note in the fifth octave last-
ing 1/8+1/16 of a second. (The period
after the eight specifies a dotted eighth
note.) Line 3 specifies an F# note in the
seventh and eighth octaves lasting one
second. The length of each channel of a
composition is limited only by the amount
of memory in the user’s machine.

Listing 1

1 C4,8

2 D,5,8

3 F#,78,1

As the system is expanded, special
characters may be added to the end of each

88-MU1’s pitch generator. This signal is
normally derived from the Altair 8800’s
two MHZ clock, but can also be externally
applied by the user. For example, input-
ting a one MHZ signal will cause the
88MU1’s entire range to be shifted down
one octave. The other signal is the soft-
ware synchronization signal. It normally
occurs at a frequency of 128 HZ, but can be
externally applied, giving the user control
of the rate of the composition execution
speed.

““This 88-MU]1 is fascinating,”’ I said
to the count.

“Yes indeed, most remarkable. . .but
unfortunately, I must be leaving you now,”’
he said. ““It’s getting close to dawn, so I
must retire. 1 trust the demonstration
pleased you.”” he remarked as he escorted
me to the courtyard where the same black
carriage was waiting. ‘‘Most impressive. 1
enjoyed every bit of it.”’

As the carriage started rolling, 1
couldn’t help but lean out the window and
shout, ‘Fangs a lot for everything!”” The
count grimaced painfully as the carriage
moved through the castle gate. But I
hurried on, eager to get home and treat my
Altair to a brand new 88-MU1.

CN/November 1977

2%

Increase Data
Storage up to 80 VIBytes with
Altair Hard Disk System

By Bennett Inkeles
MITS

The new Datakeeper Hard Disk Sys-

tem (88-HDSK) from MITS offers a unique
form of expanded mass storage for Altair
8800 series microcomputers. It consists of
the Altair Datakeeper Controller and a
Pertec D3422 Hard Disk Drive. The 88-
HDSK has a data storage capacity of
approximately 10 MBytes.
(A 20 MByte drive option is also available.
Business management, education, and
scientific applications are among the
numerous possibilities in which the
88-HDSK may be incorporated.

The following components make up
and are included with the purchase of the
Datakeeper Hard Disk System:

CN/November 1977

. Altair Datakeeper Controller in a

self-contained cabinet.

. 1 pair of interconnect cables for

controller to computer connection

. 1 cable assembly for controller to

Pertec Hard Disk Drive connection.

. 1 Pertec D3422 Hard Disk Drive

with Fixed Platter.

. 1 5440 Removable Top Loading

Cartridge with Altair Datakeeper
BASIC.

. 1 set of Bootstrap Loader PROMs

for system initialization.

. Datakeeper Hard Disk System

Documentation

The Datakeeper Controller acts as the
interface between the Hard Disk Drive and
the Altair 8800 computer. Up to four disk
drives may be interfaced with one control-
ler allowing a total storage capacity of
approximately 40 MBytes. The controller
unit includes a five-slot, bus-oriented
motherboard, three plug-in interface
boards and power supply. The plug-in
Interface boards are: .

A. Processor Board--contains a 8 x
300 bipolar processor, TTL ROM,
1K byte of buffer RAM for data
transfers, and two bidirectional
1/0 ports for communicating with
the computer.

continued page 4 Three

Increase Data Storage

continued

B. Disk Data Board--has serial to
parallel and parallel to serial con-
verters, FIF0 Registers, CRC
generator/checker, and bit count-
ers.

C. Disk Interface Board--includes the
write data rate clock, 170 ports, and
line drivers for communicating
with the Hard Disk Drive.

The Altair computer communicates to the
Datakeeper Controller through two ports of
an 88-4-P10.

The 88-HDSK utilizes the Pertec
D3422 Hard Disk Drive with 24 sectored
format. It allows for approximately S
MBAytes of storage using the Fixed Platter
and increases to 10 MBytes when the
Removable Top Loading Cartridge is
added.

To propetly implement the 88-HDSK,

the Altair 8800 series mainframe requires:

A. 48 K bytes of RAM memory (three
each of either the Altair 88-16MCD
or 88-16MCS)

B. 2 paralle! ports (one each of Altair
88-4 P10 and 88-PP)

C. 1 PROM Memory Card (Altair 88-
PMC)

D. Serial 1/0 Board for terminal com-
munication (Altair 88-2510)

E. Terminal--CRT or Teletype ™

The Datekeeper Hard Disk System

design emphasizes operational reliability
and user convenience. Turnkey Operation
assures fast and efficient power-up and
program loading. Modular construction
permits future expansion and easy compo-
nent access. The Pertec D3000 series
Hard Disk Drives have been proven in the
field in a wide variety of applications and
environments. This combination of opti-
mum design and *‘state of the art” technol-
ogy further extends the programming and
data manipulation possibilities for the
Altair 8800 series.

Controller Specifications
A. Power Requirements

70 watts typical, 120 watts maximum

Wired for 105-130V, 50/60 HZ

210-260 V, 50/60 Hz available on re-

quest

Four

B. Physical Specifications
Size - Height 5.3in (13.5 cm)
Width 16.85 in (40.5 cm)
Depth 17.3in (41.5CM)
Weight 201bs. (9.1 Kg)
Cabinet styling matches the Altair
8800b and 8800b Turnkey. A keyswitch
on the front panel controls the power
switch, and CPU Reset and Run mode.
Drive Specifications
A. Drive Type
Pertec D3422-E024-MWU
B. Data Storage Capacity

1 each Fixed Platter
4,988,928 Data Bytes
1 each 5440 type Removable Cartridge
4,988,928 Data Bytes
TOTAL 9,977,856 Data Bytes
C. Physical Format
Tracks per inch 200
Cylinders ’ 406
Disk Surfaces 4
Tracks 1624
Sectors 24
Data Bytes/Sector 256

D. Serial Data Transfer Rate
9.5 MBits/second, determined by:
Spindle speed - 2400 RPM
Density - 2200 BP1
E. Access Time
1. Latency - Maximum 25.0 mst 1%
-Typical12.5ms + 1%
2.'Seek Time - Minimum (Adjacent
Track) 10 ms, Max.
Average (Vs Full Stroke) 40 ms,
Max.
Maximum (Full Stroke) 65 ms, Max.
3. Total maximum access time to read
a Sector: 92 ms (25 ms Latency,
65 ms Seek, 2 ms Read)
F. Power Requirements

1100 watts Peak (start/stop cycle
only)
400 watts typical
95-125V
or Must specify nominal voltage
190-250V
481052 Hz
or Must specify if nominal line
58to 62 Hz frequency is 50 Hz
G. Physical Specifications
Height 8 % inches (22.2cm)
Width 19 inches (48.3cm)
Depth 29 % inches TOTAL (74.3cm)
Weight 130 Ibs. (5S9Kg)

H. Reliability
Meantime between failure - MTBF -
4000 hrs.
Service life 5 years or 24,000 hrs.
Meantime to repair - 1 hr.

1. Recommended Preventive Maintenance
-Alignment check using CE pack
recommended after moving or every 3
months/1000 hrs.
-1000 hr/3 months inspection and
cleaning recommended
-2000 hr/6 months replace air filter,
inspect for wear

NOTES
1. Ifusing the Altair 8800 Turnkey, the
88-PMC and 88-2SI0 are not re-
quired.
2. The88-HDSK System is not designed
to run with the Altair Floppy Disk or
Minidisk Systems.

CN/November 1977

Z-80 CPU Increases Processing Capabilities

Z-80CPU

Altair 88-16MCD Compatible

with 8800A

By Robert Lopez
MITS

Since the introduction of the Altair
88-MCD, there has been some confusion
among many of our customers about
whether or not it’s compatible with the
8800A and other Altair computer plug-in
boards. With a simple power supply modi-
fication to the 8800A, the 16MCD becomes
compatible with both the 8800A and all
Altair 8800 series plug-in boards.

The Power supply lines of the Altair
Bus System are unregulated supply lines,
i.e. the voltage present can vary depending
upon input A.C. line voltage and frequency
and the load power demand. Regulation
for each supply line is done individually on
each printed circuit board. An Altair
8800A should have bus lines #1 and #51 not
less than +7v. (+7.5 NOMINAL), bus
line #2 not less than +14v (+ 15 Nominal),
and Bus Line #52 not less than -14v (-15
Nominal).

Changes in technology lead to printed
circuit boards which loaded down the
+7.5v line to less than +7v. voltages less
than +7v cannot be regulated to a clean
+5Sv. The power supply modification

CN/November 1977

printed in the September 1975 CN allowed
increased loading.

Several changes have since been made
in the Altair 8800B which weren’t incorpor-
ated in the 8800A. Bus lines #1 and #51 in
the 8800B should be not less than +7v (+8
Nominal), line #2 should be not less than
+17v (+18 Nominal), and line #52 should
be not less than -17v (-18 Nominal).

The 16MCD was designed to run in
the Altair 8800B and the Altair 8800B
Turnkey, which has the same bus specifica-
tions as the 8800B. The requirement of the
16MCD which limits its operation to the
8800B is the +15V necessary for the
Mostek 4096 Rams. A 7815 regulator is
used to regulated the +15v. For complete
regulation, a 7815 requires a minimum of
+17v.

So to use the 16MCD in an 88004, it’s
necessary to convert to 8800A power
supply to 8800B specifications. In order to
accomplish this conversion, the 8800A
power transformer must be replaced
with MITS part #102621. Owners of Altair
8800A’s who purchase a 16MCD will re-
ceive the new power transformer at no
cost.

By Susan Blumenthal MITS

MITS introduces a Z-80-based Control
Processing board to increase the proces-
sing capabilities of the Altarr 8800 series
microcomputers.

Designed as a replacement for
the 8080 CPU, the Z-80 contains a powerful
extended instruction set in addition to the
standard 8080 instruction. It is compatible
with any Altair 8800 series microcom-
puter with complete compatibility. (The
Z-80 CPU Board is not compatible with the
88-PMC 8, 8K Prom Memory Card.) No
hardware modifications are necessary to
accomodate the board.

The internal hardware of the Z-80
microprocessor consists of:

--12 General purpose registors
-- 2 Accumulators

-- 2 Index registers

-- 2 Flag registers.

The Z-80 operates under a variety of
software which includes:

Z-80 BASIC - a modified version of
Altair BASIC (all current versions
4K, 8K, Extended and Disk)

DOS (Disk Operating System)
Current available versions of DOS
will operate with the Z-80.

The Z-80 CPU provides all 78 of the
8080 microprocessor instructions and an

additional 80 instructions. Some of these
added valuable instructions include:

--A block transfer group

--A block search group

--Individual bit manipulation group.

The Z-80 includes all 8080 addressing
modes plus indexed and bit modes. With
the increased capabilities of a more com-
prehensive instruction set and addressing
modes, the amount of memory required for
machine language programs decreases.

The Z-80 CPU is available for $295
fully assembled and $275 in Kit form. It’s
also available in a fully assembled Altair
microcomputer.

Specifications
Power Requirements:
S vdc at S00 MA
+12vdc at 40 MA
Instruction Cycle:
2 microseconds (minimum)
Block Transfer rate:
95,000 bytes per second including
increment and decrement overhead
Dimensions:
10”7 x 5

Five

Use the Interrupt Vector in Single-Level Interrupt

Systems

By Steve Gride
MITS Engineering Dept.

A number of new Altair computer
users have said that they don’t understand
how the interrupt system is used in the
Altair 8800 series. This has led to
a misunderstanding concerning single-
level interrupts; how are they generated,
and what happens during their acknowl-
edgement? Users also ask, ‘‘How can 1
change a single-level interrupt to jump to a
location othet than 070(8)?”’ This article
will attempt to address these questions.

The Altair 8800 microcomputers use
an eight-level vectored interrupt system.
This system is based on the interrupt-
response vector built into the 8080 CPU
chip. It has the following effect: When an
interrupt occurs, the device generating the
interrupt creates a vector address, which
the CPU uses as a restart address during
the interrupt-acknowledge cycle. This
results in a call to one of the low-memory
restart areas

In the Altair system, the restart vector

address is usually created by the 88-V1
board (vectored interrupt board). This
board allows the prioritizing of up to eight
tevels of interrupts in the restart area.
When this board is absent, howevet, it is
the responsibility of the interrupting device
to generate the interrupt address. This is
usually not done, resulting in a “‘“floating”’
input to the CPU during interrupt-acknowl-
edge time. These “floating’’ inputs look
like a vector-7 to the CPU, which acknowl-
edges with a restart to 070(8). So most
single-levelinterrupt systems automatically
generate a restart to level 7.
(Note: All MITS standard software recog-
nizes .slngle-level interrupts at level 7,
therefore, any hardware modifications will
require a corresponding change in soft-
ware.)

The way to jump to a different location
in the interrupt vector is illustrated schema-
tically in Figure 1. During ‘the interrupt-
acknowledge cycle, the CPU generates the
status signals M1 and SINTA. When these
two signals occur concurrently, the restart
vector is gated onto the data bus.

This eircuit may be built up *‘piggy-
back’’ on the 170 or other board which will
use it, or it may be built on a separate
breadboard and plugged into the bus.

Six

A
F

e
1 T
n/‘_fv._«. P SO S -.L..
f
v i
__,,/2 RSN W

1;‘.\.‘r‘i Smi > | :
g e TSN e
F(,st SINTA> .___A)?

FIG.1

FLOPPY DISK:

Does Your Drive Buzz
During a Mount?

By Thomas Durston

If your Floppy Disk Drive makes a loud
buzzing noise during Mounting of a disk-
ette, the problem can be eliminated by
adjusting a resistor on Floppy Disk Con-
troller Board #2.

The buzzing is caused by the Drive’s
head trying to step in farther than it
should. This occurs during a Mount if an
error is detected when reading the track
number. The track number error causes
the track counter (software) to think it is
farther out than it should be, stepping the

head in and against the stop at the end of
the stepping shaft. The result is the
buzzing noise.

This buzzing noise occurs only on cer-
tain diskettes if the Head Load time
constant is less than 45 ms. It is a function
of the Mount routine which reads every
eight sectors.

To correct the problem, adjust R8 on
Controller Board #2 to yield a 50ms + 4ms
pulse at 1.C. Bl pin 13 (TP-6) during a
Mount command. The value of R8 will be
approximately 16K, and a 20K or 50K trim-
pot may be used for adjustment in place of
R8.

CN/November 1977

Many of you are now sharing our

excitement over the new Altair Timeshar-

ing BASIC. Those of you who have the disk
version may be perturbed about a problem
with loading 4.0 or 4.1 Disk BASIC pro-
gram files under Timesharing. However,
with only a few minutes of your time and
the computer’s, the problem can be solved.
In the disk version of Timesharing
BASIC, an optional password may be
specified during SAVEing of a program. In
regular Disk BASIC, the password facility
is not provided. Therefore, the problem
may occur when a LOAD or RUN command
is issued in Timesharing for a program on a
regular BASIC disk. Timesharing may
respond to the command with PASSWORD
FOR FILE ““XXX. . .”’?, and the user will
not know with what password to answer.

This problem is due to the format of
the directory track on the diskettes. To
review, each sector of the directory track is
comprised of eight file name slots. Each
slot contains 16 bytes--eight bytes for the
file name, one byte for the track pointer,
one byte for the sector pointer, one byte
indicating whether the file is random or
sequential and in regular Disk BASIC, and
five unused bytes normally set to nulls. In
Timesharing Disk BASIC, these extra five
bytes are used for passwords. Occasional-
ly, ‘‘garbage” can get into these extra
bytes on the normal BASIC diskettes.
When Timesharing tries to access these
files, it “‘sees’’ a password which the user
is unaware. If all five bytes are null,
Timesharing realizes that a password is
not required.

The following program, when exe-
cuted in 4.0 or 4.1 Disk BASIC, will correct
the directory track of a 4.0 or 4.1 diskette.
The functions of PASSCHEK are to set the
last five bytes of the file name slots to nulls
and recalculate the checksum of the sector
so it can be read by Timesharing. The
program PASSCHEK contains detailed
comments regarding its execution. The

CN/November 1977

Program Allows Disk
Timesharing to Read

Non-Timesharing Diskettes.......

remark statements can be left out when
entering the program in order to utilize a
minimum amount of memory.

To use PASSCHEK, enter it into
memory using 4.0 or 4.1 Disk BASIC, (It
will not run in Timesharing.) Place the
diskette you need to correct in Disk Drive
and MOUNT it. Now type RUN. PASS-
CHEK will run for approximately two to

three minutes, printing ‘‘DONE - CHECK

USING PIP DAT COMMAND”’ when it’s
finished. If you wish to check using
PI0, the format of the floppy disk is de-
scribed in Appendix H of the Altair BASIC

For those of you who have old 3.4 Disk
BASIC program files that you want to run
under Timesharing Disk BASIC, a few
extra steps are needed before running
PASSCHEK on the 3.4 diskette. Since
Timesharing will read only 4.0 or 4.1
formatted files, you must convert your 3.4
files to the 4.0 format. This is easily done
by first LOADing and then re-SAVEing
all 3.4 program files in ASCII (e.g. SAVE
“XXX”’, 0O, A), using 3.4 Disk BASIC, and
then using the 4.0 PIP CNV command on
the diskette to convert the files to the
4.0/4.1 format. After this, you can run

Manual. PASSCHEK.
Program
10 CLEAR 508
20
LINES 30-8¢ POSTION DISK HEAD TO TRACK 70
30 CT=70 *DESIRED TFACK IS 72
49 IF C(INP(8) AND 64)<>@ THEN WAIT & 2, 2: OUT 9, 2:
GOTO 4@
50 'TEST FOR TPACKX @, IF NOT AT € STEP HEAD QUT ONE
TRACX AND TEST AGAIN
60 IF DT<@ CR DT>76 THEN PRINT "EFFQOR': STOP
7¢ FOR K=1 TO DT:WAIT 8, 2, 2: OUT 9, 1:NEXT X
89 'STEP DISK HEAD IN DT TPACKS, TC TRACK 70
99 *
LINES 1@0-16¢ GET EACH SECTOP OF TPACK 78 AND REPLACE
5 BYTES OF FILE SLOT WITH NULLS
182 FOR S£C=0¢ TO 21 'GET EACH SECTOF CF TFACK 7€
118 A$=DSKIS(SC) 'PEAD CURPENT SECTOPR
1286 FOR SL=0 TO 7 'GET EACH FILE NAYZ SLOT (8 SLCTS/SECTOR)
1320 Y3$=STRINGS(S, @)
14@ MID3$CAS, 19+ (SL*16), 5)=VS
150 'FEPLACE LAST S BYTES OF EACH FILE NAME
SLOT WITH NULLS
168 NEXT SL *GET NEXT SLOT
17¢
LINES 190-292 COFPECT CHECKLSUM BYTE OF EACH SECTOF AND
PUT MODIFIED SECTOF BACK ON DISK
180 CK=0 'SET CHECKXSUM COUNTEF TC ZEFO
19¢ FOR I=6 TO 135 *ADD UP EYTES 6 THROUGH 135
2@@ CK=CX+ASC(MIDS(AS, I, 1))
21@ NEXT 1
228 FOR J=3 TO 4 'ADD BYTES 3 AND 4 TC THE SUM OF 6-135
238 CK=CK+ASC(MID$CAS,J, 1))
240 NEXT J
258 CK=CK AND 255 'MASK OUT HIGH CPDEP & BITS SC THAT CHECX-
S IS ONLY ONE BYTE
268 MID$C(AS, 5, 1)=CHRS(CK) 'PEPLACE EBYTE 5 OF THE SECTOE WITH
NEW CHECXSUM BYTE
27@ DSKO0$ AS, SC 'PUT MODIFIELC SECTOP BACKX ON DISK
28@ NEXT SC 'GET NEXT SECTOR
298 PRINT "DONE - CHECKX USING PIP DAT COMMAND"
36@ END
0K

Seven

- PRACTICAL PROGRAMMING

By Gary Runyon
MITS

This new column will discuss some of
the things we're learning in the MITS
Computing Services Department about
how to program in Altair Basic. Although
the articles will be aimed at the beginning
programmer, even the most advanced
programmer should find the column useful
and interesting. Complete listings of pro-
gramming aids we’ve developed (cross,
reference list program, variable name
replacement programs, etc.) will be in-
cluded when necessary. But,there will be
nothing about programming in machine
code, except possibly a few USR routines.

Each month’s column will become a
chapter of the Computing Services Stan-
dard Practices Manual, which will be used
by programmers here at MITS.

LINE COUNTING

One of the first problems the begin-
ning programmer tangles with is line
counting, i.e. how to tell that you’re at the
bottom of the page when printing a report
so that you know when to space to the top
of the next page. After much work, the
beginner’s report program can decide
when to space to the next page, but for
some reason it spaces too far or not far
enough. By adding a patch,everything
works fine, except for an extra space be-
tween the first and second pages. A hokey
patch is added and all works well until the
program needs its first modification.

The solution? Adopt a convention,

understand it, and stick to it. Here at
MITS the variable name L9 is reserved for
line counting in all programs.
L9 points to the next line to be printed. It
is initialized to one plus the number of lines
printed at the exit of the page header rou-
tine. L9 is incremented by one for every
line printed thereafter. For L9=L9T066:
LPRINT:NEXT is the routine for getting
from the bottom of a page to the top of the
next page.

The 66 in the routine comes from six
lines per inch, 11 inches per page. If you’re
printing special forms (checks, invoices,

Eight

W2, etc.), or have a printer that doesn’t
print six lines per inch, replace the 66 with
the appropriate lines per page. If you need
to print a really oddball form, such as three
%7 checks, the trick is to throw in an extra
line every other check. The following will
handle three %" forms on a standard print-
er:

FORL9=L9T019:LPRINT:NEXT:IF A
THEN LPRINT:A=0 ELSE A=1.

Test for bottom of the page when you
have something to print. Testing for
bottom of page after printing can result in
an occasional sloppy header with no data at
end of report.

The usual test for bottom of page is:
IF 1L9>XX THEN GOSUB [space up and
print heading]. This results in XX lines
printed per page with 66-XX spaces
between the bottom and top of each page.

The test for bottom of page before
printing n lines when n is greater than one
is: IF L99XX+1-n THEN GOSUBI[]. For
example, if a report has three lines per
item, five lines of totals, and is not to go
below line 64, the test before printing each
item would be: IF L9>62THEN GOSUBI];
the test before printing the totals would be:
IF L9>60 THEN GOSUBI].

In those cases where n is not a fixed
constant, the test for bottom of page will
appear in the form IF L9+n XX+1 THEN
GOSUB [] (see example program). The
concept is, ‘“Will the hokey patch work well
until the program allowed value (XX+1)
after these n lines are printed?”’

The example program PROGLIST
demonstrates how to line count. The
program reads a program saved in ASCII
and prints a listing with the program name,
the current date, and page YY of pages ZZ
at the top of each page. In order to provide
at least three blank lines between each
page, the program does not print past line
63.

The two clear statements in line 70
grab off as much string space as is avail-
able. This holds to a minimum the time

lost to string space garbage collection.
Line 100 allows you to input a file name
ending with a comma and number to speci-
fy files on other than disk drive zero. Line
120 checks for the null string that is at the
beginning of every ASCII file. Lines 140-
190 read through the file, duplicating what
will happen to L9 and the page count when
the file is listed. Line 220 prints the head-
ing at the top of the first page.

The FORL9=L9T0132 in line 250
spaces the printer to the top of page twice,
leaving the listing where it can be easily
torn off.

Lines 290 and 300 show the standard
print out for one-line:

1. Test for bottom of page when
ready to print

2. Print

3. Increment the line counter

Lines 320-350 determine how many
lines will actually print when a program
line with the line feeds prints. Each part of
the line is loaded into the array L$ so that it
can be printed separately. This avoids
problems caused by line printers reacting
differently to the line feed carriage return
embedded in program lines.

Lines 360-370 show the standard print

out for more than one-line :

1. Test for bottom of page when
ready to print

2. Print

3. Increment the line counter

Line 390 is the standard to-to-top-of-
page routine.

Line 420 sets L9 to one plus the
number of lines printed in the header (one
information line and one blank line) before
exiting the heading routine.

To summarize, L9 is the next line on
the page to be printed. L9 is initialized to
one plus the number of header lines at the
exit from the header routine. L9 is incre-
mented by one after each line printed. The
test for bottom of page is executed when
the program is ready to print. The space to
top of page routine is:
FORL9=L9T066:LPRINT:NEXT

CN/November 1977

I

Letter Writing Program Solves ;,. ... v

2308 New Walland Hwy.

Photographers Mailing Problems e, remesee 37801

Wilkinson currently runs his own photography
studio. For the past 15 years he has been an avid
ham radio hobbyist, but had no previous com-
puter experience before purchasing an Altair
8800 to use in his business. In addition to the
mainfram~e, his system now consists of 24K
memory, a Teletype, ADM-3, 8-PMC, 88-ACR,
88-SIOA, 88-SIOB and wire wrap board for
morse code. Wilkinson has also recently pub-
lished three other software articles in KILOBAUD.

One of the most beneficial and fre-
quently used programs in my collection of
software is a letter writing program. When
used in conjuction with our regular direct
mail promotion program, it has been an
invaluable advertising aid.

Originally, we were sending about 200
letters each month to parents of new
babies, one year olds, and two year olds.
The parent’s names were compiled from
the local newspaper, and the letters were
prepared on our printing press. Records of
appointments made show about a three

Practical Programming
1n - kkxhkhhhhkhhhhhkhkhhk
20 ¢ * *
30 * PROGLTST *
40 ° * *
50 * khkkkhkkhkhkkkhkhkhkkikk
O
70 CLFEAR

80 LTINFE IMPUT"TODAY’S DAT® ? ";DAS
a0 LINE INPUT"PROGAM NAME ? ";N§

100 I7 HMINS(IS,LEN(NS)=1,1) = "," TUEW RE=RIGHUTS(¥S,1):
IF "0"<=RS$ AND R$<="9" THUEN NS$=LEFTS(NS$,LEN(NS)=2):N=VAL(RS)

110 OPEN"™LI",1,N8,N
120 LINE INPUT#1,LS$:

IF LEN(LS) TUEN PRINT"ASCII FILFS ONLY PLEASE,":END

130 *

TETERMINE # OF PAGES T0O BE PRINTED
AARAKARARARRARAR AR KRRARARRANRAKARR

140 NP=1:19=3
150 1% EOF(1l) THEN200
150 LIMTINPUTH#],LS:I=0:=0

170 M=M+1:I=TNSTR(I+1,L$,LF$):IFITHENLTD

180 IF LO9+'1>64 THEN NP=MP+1:1L9=3
190 L9=L94+1:00TH150
200 NPS="_ OF"4+5TR$(NP)
210 ¢
START PRINTING
kkkkhkhhkhkkkhhk
220 6NSURLNN0

230 CLISE:OPEN"TI" 1, NS, N:LINEINPUT#I,LS

240 ¢
RPEAD UP LINES FOR PRINT
khhkhkkhkhkhhkkkhkkkhkhkhhkhhkkhi

250 T* EOF(1l) THEN FORLO=LOTO132:LPRINT:NEXT:CLOSE:CLRAR20D:END

260 LINE TINPUT#1,LS
270 I=I9STR(LS$,LFS):IFITIEN32N
28n
LPRINT N0 LINE FEED LINFE
hkhkhkhkhkhkhkkhkhhkkhhkhkrkhhkkhkkkk
290 IF LO>6K3 THUENGOSURIGN
30N LPRINTLS:L9=L9+1:G0T025N0
31n

LPRINT LINE WITH EMREDOED LINE FEFRDS
kkkkhkhhhkkhhkhhhkhhhhhhkhhhhkhhkhkkk

320 M=1:H4=1

330 IFI=HTUENLS(M)=""FLSELS(M)=MINS(LE,H,T-H1)
340 M=+l M=T+2:T=TINSTR(4,L$,LFS): IFITHEN]3O
3150 IFI=HTHRENLS(M)=""ELSELS(M)=4INS$(LS,H)

36N IFLO+M>A4THENGOSUB39D

370 FPOPI=]TOM:LPRINTLS(T):NEXT:LO9=LO+1:60TN250

389

SPACY, TO HEAD OF FORM AND LPRINT HFRADER
AARRXERKRRAARRARRRRRARR KRR KRR AR kA ARk hA kK

390 FORLA=,9TN66:LPRINT:NEXT
400 PR=PA+1:PES="PAGE"+STRS(P0)+VPS

410 LPRINTNS;" LISTED ";MAS$;TAR(75-LEN(PAS)) ;PGS

420 LPRINT:LO=3:3ETHURN

CN/November 1977

40N:CLFEAR FRE(N):LFS$=CHRS(1IN):DIMLS(5N):DFFINT A-7

percent rate of response to this promotion.
This is about the national average for direct
mail advertising.

We used the Altair computer for print-
ing mailing labels for our children’s promo-
tion campaign and for writing personalized
letters. Our first mailing brought a 17%
return. Needless to say, we continued with
this personalized type of mailing, and are
still enjoying the same increased response.

However, there were several problems
in preparing the mailings. First, the type
style of the Teletype wasn’t appropriate,
and the standard roll paper wasn’t a very
high quality. Remembering an old cliche,
‘‘lemons can be turned into lemonade’’,
an idea came to mind. Why not get a
rubber stamp made that said ‘‘STUDI-O-
GRAM?”’ and imprint each letter so that it
would look like a telegram? By using this

‘stamp and placing the letter in a window

envelope we created a personalized pack-
age that the recipient felt compelied to
open.

We've used the ‘‘STUDI-O-GRAM”’
for the local births for about a year now and
still enjoy excellent success. We've
expanded the ‘‘STUDI-O-GRAM” to
include about every conceivable list we’ve
ever stored on cassette. This includes
doctors, realtors, past patrons, business-
men, little league coaches, and churches,
just to mention a few.

For those interested in adapting the
program for their own use, a sample listing
is enclosed. There’s nothing really exotic
about the program, and users should have
no trouble following it. The body of the let-
teris inserted from lines 200-279, Lines 500-
580 print the title (Mr., Mrs., Rev., etc.)
and the last name. Mailing labels can be
generated by the subroutine 600-690. The
label format can be altered by changing
lines 620 and 650-670. The inclusion of the
subroutine at lines 700-74S allows a ‘‘town
code’’ to be typed for the local area post
offices and saves much time and a great
deal of memory when typing local lists.
However, any city, state, and zip may be
typed on any data line (1000 and up), and
the program will recognize it. The subrou-
tine at 10000 switches from CRT (port
000// and 00/) to TTY (port 024 and 025 Q)
and back to the CRT in my MITS 8K,
Ver. 4.0 BASIC.

One of these days I hope to replace the
ACR with a disk and a faster printer
and then really increase sales.

continued page
page 25 Nine

Trace Program Simplifies
Debugging for Altair 680b

By Doug Jones
2271 North Mill
North East, PA 16428

The software interrupt instruction
(SWI hex 3F) in the Altair 680b computer
permits a rather unique method of setting
program breakpoints for debugging. The
PROM MONITOR manual contains a
rather good discussion of this routine in
Section V, which also includes a very short
program to print out the contents of the
processor’s registers each time a program
breakpoint occurs.

There are two methods of handling a
SWI by the MONITOR. (1) If you haven’t
set a bit 7 of BRKADR (00F2), anytime a
SWI is executed in the assembled code, a
return is made to the MONITOR. Using
the (N)ext command, all registers may be
inspected and, if you wish, modified. Con-
tinuation of the program is made by the
(P)roceed command. Everything is return-
ed back from the stack, and processing
continues. (2) If bit 7 of BRKADR is set,
upon execution of the SWI, control is
vectored to address 0000 where a user
routine, such as the print register routine,
must be waiting.

Consider the program shown in the
sample run. Assume that this program is
giving you trouble, or perhaps you would
like to watch the values loaded into the A
register. To use the SWI, the program
would have to be opened up just before the
BEQ instruction, a SWI inserted, and then
one of the two methods described above
used to watch the A register contents.

Once the program error has been
corrected, it must either be reassembled to
remove the SWIs that you have used, or
they must be NOPed out.

DEBUG TRACE will co-exist in
memory with your program. It will wrap
itself around your program so to speak and
allow you to control its running. It will
replace every instruction encountered in
your program with a SWI, give you a dump
of register content if you want it, replace
your original instruction, and continue
processing through that instruction.

In abbreviated format, here are
particulars of the program:

Length 1K.

Starting address (j) 4000.

Commands:

D Dump registers while in the

command mode.

M Return to MONITOR. After (M)
and (N)ing any part of memory, a
(P)roceed will return control to

DEBUG.
Ten

J Jump to program. You will be
queried about the starting ad-
dress. Program execution from
that point on the will be under
control of DEBUG.

A/B/C/X allows you to set the indi-
cated register.

I Set instruction breakpoint. Zero
(0000) for none.

O Set operand breakpoint. Zero
for none.

T Set trace on and trace off addresses.
To kill trace, set to FFFF and
0000 respectively.

(ESC) Escape can be used any time
during controlled program run or
register dump for return to
command mode.

*Ak k(A UTION***

Any address set or register set MUST
be valid hex characters or you will return to
MONITOR. A (J)ump command must be
executed back to DEBUG to return opera-
tion to normal.

PRINTOUTS
Type of dump:
D called by dump command (exten-
ded);
T trace dump;
B dump due to I or 0 breakpoint

(extended)
X illegal operation attempted
(extended).
I The instruction you are about to pro-
cess.

Operand will show none, one, or two
bytes, depending on the instruc-
tion.

Stack will show where the user’s
program placed it.

Program counter will normally show
the address of the instruction you are
going into. It will show the destination
address If a jump or conditional branch is
executed.

lllegal operations are RTI ($3B), WAI
($3E). RTS (839) will also be an illegal
operation if the number of returns exceeds
the number of subroutine calls.

Any return to DEBUG command mode
will normalize and cancel all subroutine
linkages. User program must be restarted
with a (J) XXXX.

Legal calls to MONITOR subroutines
OUTCH, INCH, OUTS, and OUT2H are
allowed, executed, and printed (with echo),
but are not traced.

As shown in Table 2, wherever the
user program defines the stack, approxi-
mately 11 bytes will be utilized by DEBUG.
All pointers will be returned to where you
left them.

DEBUG is volatile. In order to keep
the program length to 2 K or under, many
checks and cross-checks had to be elimi-
nated. One, for example, was a range
check that would stop all activity equal to
or above DEBUG's stack area. Some bells
and whistles also had to be excluded; for
example, the ability to proceed from a
breakpoint or an (ESC)ape.

The user’s program will run with no
trace or breakpoints established and is
interruptable by (ESC). You will, however,
notice a 100-fold increase or greater in user
program run time.

Table 1 Printout Format.

Trace Only

(extended)

TII0000SSSSCCBBAAXXXXPPPPTTTT

TTTTIIII0000

Operand breakpoint
Instruction breakpoint

Trace off

Trace on
Program counter
X-register
A-register
B-register

Condition code register

Stack pointer
Operand
Instruction
Type of dump

CN/November 1977

TRACE PROGRAM continued

Table 2 Memory Map.
43FF
Debug
4000 bo— N
Debug stack for
return links
User
program
Possible
. user’s stack
F e g 2 218
A o i Borrowed
o
00FF Monitor exec area) Normal stack
0.1.2 Reserved for vectbr .
OBJECT CODE SPOB200444542554720820202D
T ——— S1Q4ABOF3IFFAS

SI1 E4G@PBF439DOTB 7T43A6CEA3788D5 TBEA39DBF43A4CESFFFFF43967TFA35A6A
SI1 EAB1BFEA39BB643ADATOBTFA39BCE43728D38CE4239DF01867E9708439727
Si1 E4@36 F2BD43@T7CE43B5ESQR27OEF]1 439F27050808@8820F2 EEQ1 6EQ@CE43FA
Sl 1 E40518 EBDOF2@B 6B 7439 FB611BT7434DBDA31A20F] ES0Q2706BDFF81082036
S11 E4@6CF639D7F3DTF23F7E4@078DI8FF43AD8DI3FF43AF2@DFEDACFF43BIBF
Sl 1 E4@8T2@F73 D05 FF43B320FBCE4381BD40@63 TE42F8BD4313F743A620DFBD13
SI 1 E40A24313F743AT20F6BD4313F743A820EERDE3FF43A92@ET8DDEA6BOBT8D
S1 1 E4@BD4A3AGTE4256BD42E1 F7412CTF412BFE412BBD4293C6022081 9BDA2EED2
S11E40D8B 643AQFE4A3Al FF412BBD429381 TE271C81BD2 721 C6B3FE43ABSD2750
Sl E4BF304085A20F9FF42CDTE42BAFE4A3ABBDAI 4 7FE412BFF43ABSF20E18C39
SILE41@EFF81278FBCFFED2 TOABCFFO@27058C FF8226DDBD42FFB643ABFE4314
S11E4129ATBDOBOOB 743A8F743ATBD4302BD4274FEA3ABP8A80OBA600OBTA3ABDT
Sl1 EAl44TE4256080808 FF42CDBF4398BE4396B642CE36B642CD36BF4396BEA2
SI1 E415F43987C439A39B643A0818D2715818C270B818E270781CE2T703 TE4Q3E
S11E417AC2BDA2EETE4QECFEA3AB8DC2TE4212BD42DCF643ABC1392716CI3BDY
S11E419527@DCI3E2 789C13F2725C 601 TE4OEER658TE4A056 TD439A2TFETA43ES
S11E41B@SABF4398BEA439632B 742CD32B742CEFE42CDFF43ABBF4396BE439809
SI1 E41CBTE4@F8BD42 E1 FE43A9FF412B@BC5FB643A18DI 7TB643A081AD278781CE
SI1E41 E66E2 709 TE4RCEFE43ABBDA1 48 7E41 B4ABBA12CFS412BB7412CF7412B87
S11E420139BB412C2405FB412B20EFFB412BSA2@ESBDA2EI FE43ABABOBFF41B8
Sl 1 E421C2BB643APB 7422 7B 643A606000220PBEBCS FB643A12AB38DCERCBDBEBS
S11E42372PBSFE439BBSA3AOATORB6BTCE4IAGCIIETOOB84A26FSBF43A48DIAST
S11E4252 FE4A3AB@S FF43ABB643AB84 FR444444CE4A3D3084A2AFCEERASEGOBDLID
S11 EA26DFF24240ABDFFR4Cl IB26B3TE4@DBT39BC43B1272EBS43AEF643ADg0AC
Sl E428801C200B0B412CF2412B25@6BC43B3271 7398643B0F643AFBO412CF2ES
S1LEA2A3412B25FI8654B7439F7TEA31A8642TE4056BE43A4860TCE43ACESRQTB
Sl 1 F42BE37054A26FS FEA3ABFFA12BBD427CCE@R@BASO@BT43A0863FATOOFFED
S11E42D9439B3B4FBT743A33986@1 8DFBFE43ABEGQ] F743A13986028DF1 ESB2AT
S11 E42F4FT43A2398D@SBDFF62200386038C86FFS7TF3398DF6BDFFBOFT439F4E
Sl 1 E4a3@F8 D5220EF8DEABDFF5320 EBCE438ABD4@63 F6439F8D3BB643AB8DA3OF
Sl 1EA32AB643A32714B643AIBDFFSDB643A34A27TOAB643A2BDFF6D20048D242A
S11 E43458228DROBCE43A4 C6092T0AA6B0378D1833085A20F48609B7434D390E
Si1 E436@BDFF81BDFF827E426C8 DF82@F6BDFFED2@F | 0DBAFF40208008DRAFF36
SI1 EA3TBA444542554 7002041 444452203F20000DOAFFOD2A4552524F522A000E
S1 1 E43963 FFFR020000000200000023F00000030000300000000000@FFFFO0008D
Sl 1 E43B | 000000004 D46 E4A340994240A141 48A95840B15440764F4089494095
Sl 1 E43CC824A40B84440550041894189421241854189418941CE40D5416540E1
S110@43E7C241CE4@D5416540C241CE4BD513

S10400F303@5

S983080QFC

TOTAL ERRORS 020@0¢

ENTER PASS)
continued on page 12

CN/November 1977 Eleven

R

Trace Program Simplifies Debugging

Source Listing

FFEF3

NAM DEBUG
*
*SOURCE 1.2.0
*

*JUNE 1577 DLJ
*

OPT NOG
*
ORG $0OF3
FCB $FF
*

* INSTRUCTIONS:

*
* D = (D)UMP REGISTERS
* Mz (MONITOR RETURN
* J = (J)UmMP
* A/B/C/X/1/0/T =
* SET REGISTERS/BREAKPOINTS/TRACE
*
BADDR EQU $FF62
BRKADR EQU $@@F2
BYTE EQU $FF53
ECHO EQU $00F3
INCH EQU $FFPO
OUT2H EQU $FF6D
OUTCH EQU $FF8I
OUTS EQU $FF82
POLCAT EQU $FF24
*
ORG $4000
START %3S STKSV SAVE IT
TPA
STA A CCREG
*

DEBUG LDX #MES! SEND °‘DEBUG®
BSR MSG

*

EXEC LDS STKSV

STS STKHI

LDX #START-1

STX MYSTK

CLR SUBCNT

LDX SWIADR

LDA A INST

STA A X

CLR SWIADR
LDX #PRMPT POP OUT A @
BSR MSG
LDX #RUNVCT SET RUN VECTOR
STX 1 STORE AT SWI
LDA A #$TE LOAD A JMP
STA A @ STORE IT AT sSWI
COM A SET HIGH BIT
STA A BRKADR AT BREAK ADDR
JSR IN - GET A CHRCTR

LDX #JMPTB JUMP TABLE

EXECl LDA B X GET LIR

BEQ BUM DONE=

CMP B WHAT MATCH?

BEQ JMPCMD

INX TO NEXT LIR

INX

INX

BRA EXECH

JMPCMD LDX 1,X TAKE IT
JUP X

* .

BUM LDX #EM BUMMER

BSR MSG

BUMI BRA EXEC BACK YOU GO
*

DMP! STAA WHAT
DMP LDA A #3511
STA A HMNY SET FOR BIG DMP
DMP3 JSR PRNTRG
DMP2 BRA BUMI EXEC

Twelve

*

MSG LDA B 0,X
BEQ MSG!

JSR OUTCH
INX

BRA MSG

MSG! RTS

*
MONIT STA B ECHO
STA B BRKADR
SWI BACK TO MONITOR
JMP DEBUG READY FOR (PYROCEED

*
TSET BSR ADPRM TRACE SET GET ADDR
STX TON TRACE ON ADR
BSR ADPRM
STX TOFF TRACE OFF ADR
TS1 BRA DMP2 EXEC
*
BI BSR ADPRM INST BREAKPT
STX BIADR
BRA TS1 EXEC

*

BO BSR ADPRM OPRND BKPT
STX BOADR

BRA TS!

*

ADPRM LDX #MES2

ADPRMI JSR MSG

ADPRM2 JMP BAD & RIRN

*

STC JSR BY CNDTN REG
STA B CCREG

STC1 BRA TSl

*

STB JSR BY BREG
STA B BREG
BRA STCi

*

STA JSR BY AREG
STA B AREG
BRA STC!

*

STX BSR ADPRM2 XREG
STX XREG

*
ST5 BRA STCl EXEC
*

JMPXX BSR ADPRM GET ADR
LDA A X GET INST

STA A INST

JMP RUNZ

*
DIR JSR POPl LOAD OPRND
STA B CKADR+1
CLR CKADR
LDX CKADR
DIR3
JSR EXMOP
DIR2 LDA B #2 NEXT SWI
BRA EXTIA

*

EXT JSR POP2 LOAD OPRND
LDA A INST
LDX INST+! GET ADR
STX CKADR

JSR EXMOP
CMP A #$TE JMP?
BEQ EXT2

CMP A #3$BD JSR7
BEQ EXT3

EXTI LDA B #3 NEXT SWI

EXTLA LDX PCREG

EXTIB TST B

BEQ EXTIC

INX

DEC B

BRA EXTIB

EXTIC STX HERE

JMP REPAK

EXT2 B LDX PCREG
JSR SAVLK3

EXT2 LDX CKADR

STX PCREG SWAP
CLR B NEXT SWI
BRA EXTIA
EXT3 CPX #0UTCH
BEQ DOIT

CPX #0UT2HK
BEQ DOIT

CPX #INCH

BEQ DOIT

CPX #0UTS

BNE EXT2B
DOIT JSR EON
LDA A AREG

LDA B BREG
ok koA R R

FCB $BD JSR
CKADR FCB 9,8

AR ARk KK
STA A AREG
STA B BREG
JSR EOF
JSR CKHUM3 ESCAPE?
LDX PCREG NO
INX PAST JSR
INX
INX
LDA A X
STA A INST
JMP RUNZ2

*

SAVLK3 INX SAVE LINK
SAVLK2 INX
SAVLK INX
STX HERE
STS STKTMP
LDS MYSTK
LDA A HERE+!
PSH A

LDA A HERE
PSH A

STS MYSTK
LDS STKTMP
INC SUBCNT
RTS

*

IMM LDA A INST
CMP A #%8D BSR?
BEQ BSIMM
CMP A #%8C CPX?
BEQ IMM3
CMP A #$8E LDS?
BEQ IMM3
CMP A #3CE LDX?

BEQ IMM3

JMP DIR

IMM3 JSR POP2 K
JMP EXTI

BSIMM LDX PCREG

BSR SAVLK2

JMP REL

*

INHER JSR POP@ FILL OPRND
1DA B INST

CMP B #%39 RIS

BEQ INHI

CMPB #3$3B RTI

BEQ INHOUT

CMPB #$3E WAl

BEQ INHOUT

CMP B #3%$3F SWI

BEQ INHOUT

LDA B #1

JMP EXTIA

INHOUT LDA A #°X WON'T ALLOW
JMP DMP1 PRINT & EXEC
INHI TST SUBCNT

BEQ INHOUT TOO MANY RTIS?
DEC SUBCNT

STS STKTMP

LDS MYSTK

PU

L

A
STA A HERE
PUL A
STA A HERE+!

continued

Jor Altair 680b co-inue

LDX HERE

STX PCREG
STS MYSTK
LDS STKTWP
JMP EXTIC

* .
INDX JSR POP! LOAD OPRND
DX XREG
STX CKADR
cLC
CLR B
LDA A INST+] LOAD INDEX VALUE
BSR ADDM
INDX2 LDA A INST
CMP A #3AD
JSR?
BEQ INDX4
CMP A #3$6E JMP
BEQ INDXS
INDX3 JMP DIR3
INDX4 LDX PCREG
JSR SAVLK2
INDXS JMP EXT2
*
ADDM ADD A CKADR+! LS BITS
ADCB CKADR ™MS BITS
ADDMI STA A CKADR+!
STA B CKADR
RTS

*
SUBM ADD A CKADR+!
BCC sSuUB!

ADD B CKADR

BRA ADDMI

SUB! ADD B CKADR
DEC B

BRA ADDM!
*

REL JSR POP! OPRND
LDX PCREG
INX
INX
STX CKADR
LDA A INST GET READY FOR JUMP
STA A PSEUDO
LDA A CCREG LOAD CNDINS
TAP
Ak kKRR kK
PSEUDO FCB 2,2
ook Rk Rk
BRA INDX3 DOES NOT JMP
REL2 CLC DOES JMP
CLR B
LDA A INST+I]
BPL REL3 IS JMP POS OR NEG
BSR susM
FCB $8C CPX
REL3 BSR ADDM
REL4A BRA INDXS5 MAKE SWAP
*
RUNVCT LDX SWIADR RESTORE INSTR
LDA A INST
STA A X
LDA A #7
LDX #CCREG
SAVI PUL B
STA B X
INX
DEC A
BNE SAVI
STS STKHI
BSR CKXHUM CHECK HUMAN
RUN LDX PCREG
DEX DUE TO SWI
RUN2 STX PCREG
LDA A INST
AND A #$F0 CLEAR JNK
LSR A
LSR A
LSR A
LDX #TABLE-1 SET FOR JMP
R1 INX
DEC A
BPL RI
LDX X
JMP X TAKE JMP
*

CN/November 1977

CKHUM JSR POLCAT HUMAN WANT CONTROL?
BCC CKHUMZ NO
CKHUMI JSR INCH+4
CKHUM3 CMP B #$1B ESCAPE?
BNE CKHUM® NOPE
JMP DEBUG SCRAM
CKNUMZ RTS BACK YOU GO
*
EXMDR - CPX BIADR INST BKPNT?
BEQ BKPT
LDA A TOM+I
LDA B TON
SUB A #1 CRRCT FOR CARRY
SBC B #8@
SUB A CKADR+1
SBC B CKADR
BCS EX2
EXMOP CPX BOADR OPRND BKPNT?
BEQ BKPT
EXI RTS
EX2 LDA A TOFF+l
LDA B TOFF
SUB A CKADR+1
SBC B CKADR
BCS EXI
EX3 LDA A #°T
STA A WHAT
JMP PRNTRG DMP & RTRN
*
BKPT LDA A #°B
JMP DMPI PRINT & EXEC
*
REPAK LDS STKHI REPAK STACK
1DA A #7
LDX #PCREG+!
REPI 1DA B X
PSH B
DEX
DEC A
BNE REPI
LDX PCREG ANYTHING GOING ON?
STX CKADR
JSR EXMDR GO SEE
FCB $CE LDX #
HERE FCB ©,@

LDA A X
STA A INST
LDA A #$3F
STA A X
STX SWIADR
RTI

*

POP8 CLR A NO OPRND
STA A ASCFG
RTS

POP] LDA A #!
BSR POP@+1
LDX PCREG
LDA B I,X
STA B INST+]
RTS

POP2 LDA A #2
BSR POP1+2
LDA B 2,X
STA B INST#2
RTS

*

BAD BSR EON ECHO ON
JSR BADDR GET ADDR

BRA EOF

*

EON 1DA A #3003
FCB $8C CPX
EOF LDA. A #SFF
STA A ECHO

RTS
*
IN BSR EON
JSR INCH
STA B WHAT
BSR PNTS
BRA EOF

*
BY BSR EON
JSR BYTE
BRA EOF
*

PRNTRG LDX #MES4
JSR MSG
" LDA B WHAT WHAT
BSR PNTI
LDA A INST INST
BSR OUT2

TYPE DMP

LDA A ASCFG OPRND?

BEQ PRN3 NONE
LDA A INST*|
JSR OUTZ2H
LDA A ASCFG MOR
DEC A
BEQ PRN2 NOPE
LDA A INST+2
JSR OUTZ2H
BRA PRNI

PRN3 BSR XX

PRN2 BSR XX

PRNt BSR XX

DX #STKHI

Akok kKR Rk

E?

FCB $C6 (LDA B #)

HMNY FCB 9
KRR ARk K

PRNLP BEQ PRNA
LDA A X

PSH B

BSR OUT2

PUL B

INX

DEC B

BRA PRNLP
PRN4 LDA A #9 FORM
STA A HMNY

RTS
*
PNT1 JSR OUTCH
PNTS JSR OUTS
PNIC JMP CKHUM

*
XX BSR PNTS
BRA PNTS

*

OUT2 JSR OUTZH
BRA PNTS

*

PRMPT FCB $@D,$8A
FCB $FF
FCC /@ /
FCB @

*

MES1 FCB $@D,$@A
FCB $FF
FCC /DEBUG/
FCB @

*x

RESET

MES2 FCC / ADDR ? /

FCB @

*
MES4 FCB $0D,$0A
FCB $FF,0

*
EM FCC /%ERROR*/
FCB @

*
MYSTK FDB START-1
STKTMP FCB 2,0
SUBCNT FCB @
SWIADR FCB 0,0
STKSV FCB 0,8

*

WHAT FCB ©

INST FCB $3F,0,0
ASCFG FCB 0
STKHI FCB 0,0
CCREG FCB 0
BREG FCB 0

AREG FCB O

XREG FCB 9,0
PCREG FCB 2,8
TON FCB $FF,$FF
TOFF FCB 2,0
BIADR FCB 0,0
BOADR FCB 9,8

*

JMPTB FCC /M/ MONITOR

FDB MONIT
FCC /C/ CREG
FDB STC

FCC /B/ BREG

continued on pagel4

Thirteen

Trace Program Simplifies Debugging

Assembled Listing

20201 NAM DEBUG
teds 02002 *
Source Listing 26083 *SOURCE 1.2.0
continued Ped24 *
20025 *JUNE 1977 DLJ
20226 *
20007 OPT NOG
poees *
FDB STB . 20009 O0F3 ORG $00F3
FCC /A/ AREL . 00012 BEF3 FF FCB $FF
FDB STA 2001 1 *
FCC /X/ XREG 20012 * INSTRUCTIONS:
FDB STX 20213 *
FCC /T/ TRACE 22214 * D = (D) WP REGISTERS
FDB TSET 20015 * M= (MONITOR RETURN
FCC /0/ OPR BKPT 20215 * J oz () MP
FDB BO 20017 x A/B/C/X/1/0/T =
FCC /1/ INST BKPT 20013 * SET REGISTERS/BREAKPOINTS/TRACE
FDB BI 20019 *
FCC /J/ JMP 00020 FF62 BADDR EQU $FF62
FDB JMPXX 22021 VoF2 BRKADR EQU $00F2
FCC /D/ DMP REG 08222 FF53 BYTE EQU $FF53
FDB DMP 20023 BOF3 ECHO EQU $Q0F3
Fce o 20024 FFo0 INCH EQU $FF20
* 20025 FF&D OUT2H EQU $FFSD
TABLE FDB INHER poa26 FF81 OUTCH EQU $FF81
FDB INHER 20227 FF82 OUTS EQU $FF32
FDB REL 22028 FF24 POLCAT EQU $FF24
. FDB INHER 20029 -
© FDB INHER 20032 4000 ORG $4900
FDB INHER 20831 4080 BF 439D START STS STXSV SAVE IT
FDB INDX 20032 4003 @7 TPA
FDB EXT 20033 4204 BT 43A6 STA A CCREG
FDB 1M 20034 *
FDB DIR P0B36 4@@7 CE 4374 DEBUG LDX #MES! SEND °'DEBUG’
FDB INDX 20237 400A 8D 57 BSR MSG
FDB EXT 20038 *
FDB IMM @0039 400C BE 439D EXEC LDS STKSV
FDB DIR 00040 APAF BF A3A4 STS STKHI
FDB INDX @241 4012 CE 3FFF LDX #START-1
FpB EXT 00842 4815 FF 4396 STX MYSTK
* Y0043 4013 TF 435A CLR SUBCNT
ORG $P2F3 P2044 42I1B FE 4398 LPX SWIADR
FCB $03 @0045 4G1E BE 43AQ LDA A INST
* 20046 402] A7 0@ STA A X
END 22047 4823 TF 4398 CLR SWIADR
20048 4026 CE 4372 LDX #PRMPT POP OUT A @
: 20245 4025 8D 38 BSR MSG
@ 20052 4028 CE 4239 LDX #RUNVCT SET RUN VECTOR
00251 402E DF @1 STX 1 STORE AT SWI
P0@52 4930 86 TE LDA A #$7E LOAD A JmP
PO053 4032 97 08 STA A 2 STORE IT AT SWI
@0054 4834 43 coM A SET KIGH BIT
PB855 40835 971 F2 STA A BRKADR AT BREAK ADDR
00056 4837 BD 4307 JSR IN GET A CHRCTR
92857 483A CE 43B5 LDX #JMPTB JUMP TABLE
90958 403D E6 @@ EXEC! LDA B X GET LTR
@059 403F 27 OF BEQ BUM DONE?
20060 4041 F1 A3SF CMP B WHAT MATCH?
Q006! 4044 27 @5 BEQ JMPCMD
p0062 4BAS 08 INX TO NEXT LTR
@0P63 4047 08 INX
P0064 4048 08 INX
@0065 4849 20 F2 BRA EXEC!
@P266 4P4B EE @1 JMPCMD LDX 1,X TAKE IT
PPRST 404D SE 08
JMP X
00068 *
@036 404F CE 438E BUM LDX #EM BUMMER
20070 4852 8D OF BSR ¥S G
POB71 4654 20 B6 BUMI BRA EXEC BACK YOU GO
20072 *
@0073 4056 B7 439F DMPI STA A WHAT
0274 4059 86 11 DMP LDA A #511
@2075 405B B7 434D STA A HMNY SET FOR BIG DMP
@P076 405E BD 431A DMP3 JSR PRNTRG
P2077 4061 20 FI DMP2 BRA BUM! EXEC
P2a78 *
00075 4063 ES 88 MSG LDA B 8,X
PYO8Y 4065 27 B6 BEQ S GI
20081 4867 BD FF8! JSR OUTCH
Q0082 406A 08 INX
20083 406B 20 F6 BRA MSG
P0084 406D 39 MSGl RTS
20085 *
continued

Fourteen CN/November 1977

for Altair 680b -:-..c

BASIC BUSINESS SOFTWARE

@086 406E DT F3 MONIT STA B ECHO ,

22087 487¢ DT F2 STA B BRKADR Disc Sort $195

00238 4872 3F SWI BACK TO MONITOR Interactive system generates customized job-

20089 4873 TE 4007 JMP DEBUG READY FOR (P)ROCEED stream sort module for sequential or random

20050 * files.

o82S1 4876 8D 18 TSET BSR ADPRM TRACE SET GET ADDR

00092 4078 FF 43AD STX TON TRACE ON ADR Comrespondence Processor $195

ggggi :g;g ?:? 411 gAF 2?2 ?g’;ﬁ“ IRAGE OFF ADR Manipulates text and name/address disc files
with d hecking. V

00055 4088 20 DF TSt BRA DNMP2 EXEC oth prompts and error checking. Very easy

20056 * .

20097 4082 8D 8C BI BSR ADPRM INST BREAKPT Key-to-Disc $195

98098 4084 FF 43B1 STX BIADR Interactive system generates custom module

gg?gz 4087 20 FT . ERA TSt EXEC with user defined CRT/disc formats, validity
checks and automati li in-

@810l 4089 8D @5 BO BSR ADPRM OPRND BKPT e eutomatic entry duplicate or in

@01@2 4@8B FF 43B3 STX BOADR

00103 408E 20 F@ BRA T51 Supplied on diskette with user manual and pro-

20104 * gram documentation. See your Altair dealer

90195 4850 CE 4381 ADPRM LDX #MES2 of contact Us.

20106 4893 BD 4063 ADPRMI JSR ¥SG

22187 4056 TE 42F8 ADPRM2 JMP BAD & RIRN

00108 * THE SOFTWARE STORE

PB109 4099 BD 4313 STC JSR BY CNDTN REG 706 Chippewa Square Marquette MI 49855

08118 489C F7 43A6 STA B CCREG Master Charge - 906/228-7622 - VISA

80111 409F 20 DF STC1 BRA TSI

20112 *

98113 4@A1 BD 4313 STB

JSR BY BREG

PB114 4BA4 FT 43A7 STA B BREG

28115 40A7 20 F§ BRA SICI

20116 * c - gam

P0117 40A9 BD 4313 STA JSR BY AREG l f d

92118 48AC F7 43A8 STA B AREG ass. Ie

00115 40AF 20 EE BRA STC!

: Ad

#0121 4@B1 8D E3 STX BSR ADPRMZ XREG S

08122 48B3 FF 43AS STX XREG

00123 *

20124 40B6 20 ET STS BRA STC1 EXEC For SaTle

00125 * L T™

20126 48B8 8D D6 JMPXX BSR ADPRM GET ADR Altair ~ 8800

@0127 48BA A6 00 LDA A X GET INST Fully assembled, tested--runs beautifully.

20128 4@BC B7 43A0 STA A INST 16K memory, serial 1/0, RS232 1/0,

gg{gg 4@BF TE 4256 . JMP RUN2 Clock Vectored Interrupt, flexible disk.

26131 4aec2 BD 42El DIR JSR 5 ES:BR . LOAD OPRND All documentation and many programs.

P0132 48C5 F7 412C STA + includi .

0133 4808 TF 4125 LR CKADR ding Op. Sys., Assem., Edit,

@0134 40CB FE 412B LDX CKADR BASIC and games.

92135 4@CE BD 4293 DIR3 JSR EXMOP $3200

90136 48D1 C6 @2 DIR2 LDA B #2 NEXT SWI o .

20137 4@D3 20 15 BRA EXTIA ontact:

00138 * Computer Solutions

90135 4@D5 BD 42EE EXT JSR POP2 LOAD OPRND 1792351(Park C

@0140 4BD8 BS 43AD LDA A INST . y Park Cr.

20141 40DB FE 434l LDX wsr;n GET ADR Suite L

@0142 4@DE FF 412B STX CKAD Irvin

@@143 40El BD 4293 JSR EXMOP e, CA 92714

P0144 40E4 81 TE CMP A #$7E JmP? (714) 751-5040

@2145 4BEE 27 IC BEQ EXT2

Pd146 4QFE8 81 BD CMP A #3BD JSR?

P8147 4BEA 27 21 BEQ EXT3

@@148 AQEC C6 83 EXTl LDA B gsREG NEXT SWI

28149 4QEE FE 43AB EXTIA LDX C -

08158 4@F1 SD EXTIB TST B o t

83151 ABF2 27 B84 BEQ EXTIC I‘I‘ec lOl.

PB152 40F4 08 INX

@8153 4@F5 5A DEC B

20154 4@F6 20 F9 BRA EXTIB GLITCHES, p. 19, Oct. CN

90155 4@F8 FF 42CD EXTIC STX HERE The last line in the second paragraph

90156 A@FB 7E 42B4 JMP REPAK hould 4. “Ki ;

80157 A@FE FE 43AB EXT2B LDX PCREG should read, *Kits and assembled units

28158 4101 BD 4147 s SAVLKS will use 74LS13 for ICA and B. There’s no

J .

@8159 4104 FE 412B EXT2 LDX CKADR such chip as a 74SL5153. .

20160 4107 FF 43AB STX PCREG SWAP Also, note that a separate 25-pin

88}2& 2{33 ZS El g}liﬁ g EXT1A NEXT SWI DB connector is used for RS-232 (wired as

P2163 410D 8C FF81 EXT3 CPX #QUTCH before), and a separate 25SDB connector is

00164 4110 27 OF BEQ DOIT usedfortheTTYprinter_

28165 4112 8C FF8D CPX #0UT2H

PO166 4115 27 QA BEQ DOIT

22167 4117 8C FFo@ CPX #INCH

20168 411A 27 @5 BEQ DOIT

continued on page |8

CN/November 1x77 Fifteen

Destroying Klingons Can

% GOSUB1500 '
10 DIM D(S), K1(7),K2(7),K3(7),S(7:7),Q(7, 7)., D$(3)

20 Q$=". EKB»*"

30 D$(0)="WARP ENGINES"

Audio Star Trek Using the 88-MU1- 20 D$(1)="SHORT RANGE SENSORS"
By Thomas G. Schneider SO D$(2)="LONG RANGE SENSORS"
MITS &0 D$(3)="PHASERS"

70 D$(4)="PHOTON TORPEDDES":D$(5)="CGALACTIC RECORDS"
80 INPUT"PLEASE ENTER A RANDOM NUMBER"; E$: I=ASC(ES)

Bleep-Bleep! 90 I=I-11#INT(I/11):FOR J=0 TO I:K=RND(1):NEXT:PRINT"WORKING—"
.] 100 DEF FND(N)=SGR((K1 (I}-51}"2+(K2(I1)-82)"2)
Klingon at sector 4-8, Captain. I 110 GOSUB 610: GOSUB 450: G1=X:@2=Y: X=8: Y=1: X1=. 2075: Y1=6. 28: X2=3. 28
recommend immediate action. 120 Y2=1. 8: A=. 96: C=100: W=10: K?=0: B9=0: §9=400: T9=3451: GOTO 140
Blow hi Sulu! 130 K=K+ (NCX2)+(NSY2)+ (NS, 283+ (N<, 08)+(N<, 03)+(N<. 01): K9=K9-K: 6OTO 160
ow him away, Sulu 140 TO=3421: T=TO: EO=4000: E=E0: PO=10: P=P0: FOR I=0 TO 7
BZZ777777777777T. . .Poot! 150 FOR J=0 TO 7:K=0:N=RND(Y): IF NCX1 THEN N=N#64:K=(NY1)-Y:GOTO 130

; : 160 B=(RND(Y)>A):BI=B9—B: Q(I, J)=K#C+B#W—INT (RNDCY)#X+Y): NEXT J I
Klingon destroyed, Captain! 170 IF K9>(T9-TO) THEN T9=TO+K? . .

Wouldn’t computer Star Trek be really 180 IF B9>0 THEN 200

far-out if it 9 190 GOSUB 450:Q(X, Y)=@(X, Y)-10: B9=1
actually made those sounds? 200 PRINT LEFT$("STARTREK ADAPTED BY L.E.COCHRAN 2/29/7&", 8):KO=K7

Let’s face it, watching those K’s disappear 210 PRINT“OBJECTIVE: DESTROY": K9 "KLINGON BATTLE CRUISERS IN";T9-TO0;
on your screen quietly and undramatically 220 PRINT"YEARS. “: PRINT" THE NUMBER OF STARBASES 1S*; B9

) lot to be desired. B th 230 A=0: IF @1<0 OR @1>7 OR G2<0 OR G2>7 THEN N=0:S=0:K=0:60TO 230
eaves a lot to be desired. But now, wit 240 N=ABS(G(Q1,@2)): G(A1, @2¥=N: S=N-INT(N/10)#10: K=INT(N/100)

the new Altair 88-MU1, you can produce 250 B=INT(N/10-K#10):GOSUB 450: Si=X: 82=Y

260 FOR I=0 TO 7:FOR J=0 TO 7:S(I,J)=1:NEXT J: I:S(S1,82)=2

almost any sound effects for practically any 270 FOR 1=0 TO 7.K3(I)=0:X=8: IF I<K THEN COSUB 460:S(X,Y)=3:K3(I1)=59

purpose, including Star Trek. 280 K1(I)=X:K2(I)=Y:NEXT: I=6
Listing 1 is a version of r 290 IF B>0 THEN GOSUB 440:S(X,Y)=4
. g Star Trek 300 IF I>0 THEN GOSUB 4&0:S(X, Y)=5: I=I-1:60TO 300
modified for sound effects. These effects 310 GOSUB 550: IF A=0 THEN GOSUB 480
are generated by the subroutines listed at 320 IF E<=0 THEN 1370
the end of the br Sound 330 I=1:1IF D(I)>0 THEN &20
program. Sounds are pro- 340 FOR I=0O TO 7:FOR J=0 TO 7:PRINT MID$(@$,S(I,J),1); " “;: GDSUB1700: NEXT J
duced for maps, warp engines, photon tor- 350 PRINT" *;:ON I GOTO 380, 390, 400, 410, 420, 430, 440
ed h . 360 PRINT“YEARS ="; T9-T
pedos, phasors, destruction of stars and 370 NEXT: 6OTO 650
klingons, and command prompts. As an 380 PRINT"STARDATE="; T:6OTO 370
added feature, an appropriate melody i 390 PRINT“CONDITION: ";C$:€0TO 370
laved L pprop ody 1S 400 PRINT"QUADRANT="; @1+1; "—"; G2+1: GOTO 370
played to insult the user who misses a 410 PRINT"SECTOR =“;S1+1; “~*; §2+1:GAQTO 370
klingon. If you want to modify Star Trek 420 PRINT“ENERGY=";E:GOTO 370
. . L. 430 PRINT D$(4); “="; P: 6OTO 370
eve.n more radically, refer to listing 2, 420 PRINT“KLINGONS LEFT=";K9:GOTO 370
which shows where the sound routines are 450 X=INT(RND(1)#8): Y=INT(RND(1)#8): RETURN
called 460 GOSUB 430: IF S(X,Y)>1 THEN 460
: . 470 RETURN
So plug in your new 88-MU1, load up 480 IF K<1 THEN RETURN
audio Star Trek, turn up your amplifier 490 IF C$="DOCKED" THEN PRINT“STARBASE PROTECTS ENTERPRISE":RETURN
d h . ’ 500 FOR I=0 TO 7: IF K3(I1)<=0 THEN NEXT:RETURN
and get those klingons. 510 H=K3(I)#*. 4#RND(1): K3(I)=K3(I}~H: H=H/(FND(0)~. 4): E=E-H
520 E$="ENTERPRISE FROM":N=E:COSUB 530: NEXT: RETURN
530 PRINT Hi "UNIT HIT ON “;E$; * SECTOR"; K1(I)+1; "—"iK2(I)+1;

540 PRINT" (";N; "LEFT)": RETURN

550 FOR I=S1-1 TO S1+1:FOR J=62-1 TO S2+1

560 IF I<0 OR I>7 DR J<O OR J>7 THEN 580

$70 IF S(I,J)=4 THEN C$="DOCKED":E=EOQ:P=PO: GOSUB 610: RETURN
580 NEXT J, I: IF K>O THEN C$="RED": RETURN

590 IF E<EO#.1 THEN C$="YELLOW":RRETURN

600 C$="GREEN": RETURN

610 FOR N=0 TO 5:D(N)=0:NEXT:RETURN

620 PRINT D$(I); " DAMAGED. “i

630 PRINT" *i;D(I); "YEARS ESTIMATED FOR REPAIR. ":PRINT

&40 IF A=1 THEN RETURN

&350 FORLL=1TO7: PRINTMIDS ("COMMAND", LL, 1}; : GOSUB1600: NEXT: GOSUB13500: INPUTA
660 IF A<1 OR A>6 THEN 680

&70 ON A GOTO 710, 310, 1250, 1140, 690, 1300

&80 FOR I=0 TO 3:PRINT I+1; "= ";D$(I):NEXT:60TO &30

690 IF D(4)>0 THEN PRINT“SPACE CRUD BLOCKING TUBES. ";: I=4:GOTO &30
700 N=19: IF P<1 THEN PRINT"NO TORPEDOES LEFT":GOTO &30

710 IF A=5 THEN PRINT“TORPEDO “;

720 INPUT"COURSE (1-8.9)";C: IF C<1 THEN 630

730 IF C>=9 THEN 710

740 IF A=5 THEN P=P-1:GOSUB1900: PRINT"TRACK: ";:6G0TO 900

750 INPUT“WARP (0-12)";W: IF W<=0 OR W>12 THEN 710

760 IF W<=.2 OR D(0)<=0 THEN 780

770 I=0:PRINT D$(I); " DAMAGED, MAX IS .2 “,:GOSUB 630:G07T0 750

continued

Sixteen CN/November 1977

Bring Music to Your Ears

780
790
800
810
820
830
840
850
860
870
880
890
200
710
?20
9?30
740
950

GOSUB2000: GOSUB 480: IF E<=0 THEN 1370

IF RND(1)>. 25 THEN 870

X=INT(RND(1})#6): IF RND(1)>. 5 THEN 830
D(X)=D(X)+INT(6~RND(1)%*5): PRINT"##SPACE STORM, *“;

PRINT D#$(X): " DAMAGED#x": I=X:GOSUB &30:D(X)=D(X)+1:60TO 870
FOR I=X TO S:IF D(I)>0 THEN 8&0

NEXT

FOR I=0 TO X:IF D(I)<=0 THEN NEXT:GOTO 870
D(I}=. 5: PRINT"##GPOCK USED A NEW REPAIR TECHNIQUEM*#"

FOR I=0 TO 5:IF D(I)=0 THEN 890

D(I)=D(I)—1:IF D(I)<=0 THEN D(I)>=0: PRINT D$(I);" ARE FIXED!'"
NEXT: N=INT(W*8): E=E-N-N+. 3: T=T+1:6(S1, 82)=1

Y1=G1+ 5:X1=82+. 3:IF T>T? THEN 1370

Y=(C—~1)#, 783398: X=COS(Y}: Y=-SIN(Y)

FOR I=1 TO N:Y1=Y1+Y: X1=X1+X: Y2=INT(Y1): X2=INT(X1)

IF X2<0 OR X2>7 OR Y2<0 OR Y2>7 THEN 1110

IF A=3 THEN PRINT Y2+1; "-"; X2+1,

IF S(Y2, X2)=1 THEN NEXT:GOTO 10460

2?60 PRINT: IF A=1 THEN PRINT"BLOCKED BY *“;
970 ON S(Y2, X2)~-3 ¢0OTO 1040, 1020

P80 PRINT“KLINGON"; : IF A=1 THEN 1050

990 FOR I=0 TO 7:IF Y2<>K1(I) THEN 1010

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
i110
1120
1130
1140
1150
1160
1163
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1345
1350
1360
1370
1380
1390
1400
1410
1420
1430
1500
1510
1520
1600
1605
1610
1620
1630
1640
1650
1700
1705
1706
1707

IF X2=K2(I} THEN K3(I)=0

NEXT: K=K-1: K?=K9~1: GOTO 1070

PRINT"STAR"; : IF A=5 THEN S=S-1:60T0 1070

GOTO 1050: 2L29E76C

PRINT“STARBASE": : IF A=5 THEN B=2:G60TO 1070

PRINT" AT SECTOR"; Y2+1; "~"; X2+1: Y2=INT(Y1-Y}: X2=INT(X1-X}
S1=Y2: 82=X2: 8(51, 82)=2: A=2: GOTO 310

PRINT" DESTROYED!";:GOSUB2200: IF B=2 THEN B=0:PRINT". . .GUOD WORK'";
PRINT: §(Y2, X2)=1: Q(G1, G2)=K*100+B#10+5: IF KF<1 THEN 1400
GOSUB 480: IF E<=0 THEN 1370

GOSUB 5350: 6GOTO 650

IF A=3 THEN PRINT“MISSED!*“: GOSUB2300: GOTO 1090
QI=INT(Q1+WxY+(Si+. 3)/8): Q2=INT (Q2+WrX+(S2+. 3)/8)
Q1=Q1-(@1<0)+(Q1>7): A2=Q2~(QG2<0)+(A2>7): GOTQ 230

I=3: IF D(I)>0 THEN 620

INPUT"PHASERS READY: ENERGY UNITS TO FIRE"; X: IF X<=0 THEN &30
IF X>E THEN PRINT“ONLY GOT"; E:GOTO 11350

GOsUB2100

E=E-X:Y=K.FOR I=0 TO 7:IF K3(I)<=0 THEN 1230

H=X/ (Y#(FND(O)™. 4)): KI(I)=KI(I)-H

E$="KILINGON AT":N=K3(I):GOSUB 530

IF K3(I}>0 THEN 1230

PRINT"#%KLINGON DESTROYED##": GOSUB2200
K=K—1:K?=KP-1: S(K1(I), K2(I))=1:Q(a1, G2)=G(A1, @2)-100
NEXT: IF K9<1 THEN 1400

GOTO 1090

I=2: IF D(I}>0 THEN &20

PRINT D$(I);“ FOR QUADRANT"; Q1+1; “—"; G2+1

FOR I=Qi-1 TO Qi+1:FOR J=G2-1 TO Q2+1:PRINT" "

IF I<0 OR I2>7 OR J<O OR J-7 THEN PRINT“##%";:GUIU 1350
Q(I, J)=ABS(Q(I,J)): GOTO 1340

I=3: IF D(I)>0 THEN &20

PRINT"CUMULATIVE GALACTIC MAP FOR STARDATE"; T

FOR I=0 TO 7:FOR J=0 TO 7:PRINT" “;

IF Q(I, J)<O THEN PRINT“#%s%; :.GQTO 1350

E$=STR$(Q(I, J)):E$="00"+MID$ (E%, 2): PRINT RIGHTS$(ES, 3);
6OSuUB1800

NEXT J: PRINT:NEXT I:GOTQ &350

PRINT: PRINT“IT IS STARDATE"; T: RETURN

GOSUB 1360: PRINT“THANKS TO YDUR BUNGLING, THE FEDERATION WILL BE"
PRINT"CONGQUERED BY THE REMAINING"; K9; "KLINGON CRUISERS!"
PRINT“YOU ARE DEMOTED TO CABIN BOY!":GOTO 1430

GOSUB 1360: PRINT“THE FEDERATION HAS BEEN SAVED!"
PRINT"“YOU ARE PROMOTED TO ADMIRAL":PRINT KO: "KLINGONS IN";
PRINT T-TO: "YEARS. RATING="; INT(KQ/(T-TO)#1000)
INPUT"TRY AGAIN";ES$:IF LEFTS$(ES$, 1)="Y" THEN 110

REM 88-MU1 INITIALIZE

OUT20363, 128: OUTX0367, 128: CUTL0373, 128

RETURN

REM COMMAND BEEPER

aa=1

0=3

N=INT (250#RND(GQ)) AND&O3&0

OUT%0360, 0: OUT&O362, N

FORDD=0T0O14: NEXT

RETURN

REM MAP #2 SOUND

IFS(I, J){2THENRETURN

IFS(I, J)C>3THENLI710

OUT#0361. 128: OUT20360, 128: OUTXD362, 14: FORDD=0TO100: NEXT: GOSUB 1500: RETURN

continued on page 18

CN/November 1977

Seventeen

Destroying Klingons Can Bring Music to

1710
1720
1730
1740
1800
18038
180&
1810
1820
1830
1840
1900
1205
1910
1920
1930
1940
1945
1950
2000
2005
2010
2019
2020
2021
2025
2040
2045
2030
2100
2110
2112
2113
2116
2130
2140
2150
2200
2205
2210
22195
2220
2230
2240
2300
2310
2315
2320
2330
2340
2350
3000
3001
3002
3003
3004
3008
3006
3010

oUT%0361,S(1, J)
oUT%0362, 2™1

GOSUB1500

RETURN

REM MAP #3 AND #& SOUND
IFQG(I, J)<I00THEN1810

oUT20361, 128: OUTX0360, 128: OUTXO362, 16: FORDD=0TO100: NEXT: GOSUB1500: RETURN

OUTA0361, Q(I, J?
QUT%0362, 271
GOSUB1500

RETURN

REM PHOTON TORPEDO SOUND
0=128

0=0/2

FORN=0TO11
OUTH0362, N: OUT0361, 0
NEXT: IFO<>1THEN1910
GOSUB1S500

RETURN

REM WARP SOUND
FORKK=1T03

ouUT&0361, 20300
ouUT%0360, %040
FORN=0TO11

NN=N#16: QUT20362, NN+N
FORDD=0TOS0: NEXT

NEXT

NEXT

QUTL0360, 0: QUTX0361, 0: RETURN

REM PHASOR SOUNDS
FORPP=1TD200
ouUT#0361, 3
PN=ABS(PN—-1)
QUTL0362, PN

NEXT

0OUT&0361, 0

RETURN

REM DEAD ITEM SOUND
ouUT&O361, &0300
FORN=11TOOSTEP~1
FORDD=0TO40: NEXT
ouUT&0362, N

NEXT
OUT&0361, O: RETURN
REM INSULT MELODY
READN, TT
IFTT=0THEN2350
ouUT&0361, x010: OUTHO362: N
FORD=0TOTT: NEXT
GOTOR310
OUT%D361, 0: RESTORE: RETURN
DATAZ, 100

DATAl12, 4

DATAG, 100

DATAQ, 100

DATAS, 100

DATAZ, 200

DATAO, 200

DATAOQ, O

Eighteen

continued

20169
22178
2o1 7!
8ol 72
20173
20174
20175
82178
o177
28178
281179
00180
20181
20182
20183
20183
20186
00187
20188
20189
20190
22191
oo192
201953
20154
28195
20196
28197
22198
22199
00200
o201
202082
0202083
208204
20205
020206
0207
20208
20229
vaz2io
00211
po2i2
209213
02214
20215
20216
oozt 7
00218
20219

00220
80221
20222
0223
20224
08225
88226
202217
20228
20229
00230
020231
90232
20233
00234
20235
20236
002317
020238

a11cC
AllF
4121
4124
4127

412A
412B

412D
4130
4133

4136

4139
413C
413E
413F
4141

4144

4147
4148
4149
414A
414D
4150
4153
4156
4157
415A
415B
415E
4161
4164

4165
4168
416A
416C
416E
4170
4172
4174
4176
4178
4178
417E
4181
4184
4186

4189
418C
418F
4191
4193
4195
4197
4199
419B
419D
419F
4]1Al
4lA4
41A6
41 A9
4]1AC
41AE
41B1

TRACE PROGRAM

8C
26
BD

F6

BD
29

B7

F1
BD
BD

28
28
A6
B7
1E

28
28
28
FF
BF
BE
B6&
36
B6§
36
BF
BE
7c
39

B6

27
81

27
81

27
81

27
7E
BD
7E

8D
7E

BD
Fé
Cl

27
Cl

27
Cl

27
cl

27
cé
TE
86
1E
70
27
A

BF

Assembled Listing continued

FF82
Db

42FF
43A8
43A7

43A8
43A7
4302
4274
43AB

00
43A0
4256

42CD
4398
4396
42CE

42CD

4396
4398
4394

43A0
8D
15
8C

8E
a7
CE
23
40C2
42EE
40EC
43AB

4212

CPX
BNE
DOIT JSR
LDA
LDA
kAR K
FCB
CKADR FCB
FRRAK KKK
STA
STA
JSR
JSR
LDX
INX
INX
LDA
STA
JMP
*
SAVLK3 INX
SAVLK2 INX
SAVLK] INX
STX
STS
LDS
LDA
PSH
LDA
PSH
STS
LDS
INC
RTS

Imm LDA
CcMP
BEQ
cmpP
BEQ
cMP
BEQ
CcMP
BEQ
JMP
IMM3 JSR
JMP
BSIMM LDX
BSR

JWP

INHER JSR
LDA
CMP
BEQ
CwpP
BEQ
CMP
BEGQ
cMP
BEQ
LDA
JMP
INHOUT LDA
JMP
INHKI ST
BEQ
DEC
STS

continued

>> DD

>» >

>

» ® w ®© w oW

#0UTS
EXT2B
EON
AREG
BREG

$BD
2,0

AREG
BREG
EOF
CXHUM3
PCREG

X
INST
RUN2

HERE
STKTMP

MYSTK
HERE+1

HERE

MYSTK
STKTMP
SUBCNT

INST
#3$8D
BSIMM
#%$8C
ImMmM3
#3$8E
IMm3
#3CE
IMmM3
DIR
pPoP2
EXTI
PCREG
SAVLK2

REL

POP@
INST
#339
INHIL
#353B
INHOUT
#3$3E
INHOUT
#53F
INHOUT
#1
EXTIA
#°'X
DMP1
SUBCNT
INHOUT
SUBCNT
STKTMP

JSR

ESCAPE?
NO
PAST JSR

SAVE LINK

BSR?
CPX?
LDS?
LDX?

oK

FILL OPRND .
RTS
RTI
WAL
SWI

WON'T ALLOW
PRINT & EXEC

TOO MANY RTS?

CN/November 1977

TRACE PROGRAM
Assembled listing continued

20239 41B4 BE 4396 LDS MYSTK
@0249 41B7 32 PUL A

@241 41B8 BT 42CD STA A HERE

@242 41BB 32 PUL A

22243 41BC B7 42CE STA A HERE+1

90244 41BF FE 42CD LDX HERE

00245 41C2 FF 43AB STX PCREG

#0246 41C5 BF 4396 . STS MYSTK

@247 41C8 BE 4398 LDS STKTMP

20248 41CB TE 40F8 JMP EXTIC

20249 *

20258 AICE BD 42Et INDX JSR POPI LOAD OPRND

@251 41Dl FE 43AS LDX XREG

#0252 41Da FF 412B STX CKADR

20253 41 D7 @C CLC

80254 41D8 SF CLR B

82255 41D5 B6 43Al LDA A INST+1 -~ LOAD INDEX VALUE

92256 41DC 8D 17 BSR ADDM

@257 41 DE B6 43A8 INDX2 LDA A INST

28258 41El 81 AD CMP A #SAD JSR?

20259 41E3 27 87 BEQ INDX4

@0262 41ES 81 6E CMP A #36E JMP

00261 41E7 27 29 BEQ INDX5

00262 41ES 7E 48CE. INDX3 JMP DIR3

98263 ALEC FE 43AB INDX4 LDX PCREG

20264 4l EF BD 4148 JSR SAVLKZ

20265 41F2 7E 4184 INDXS JMP EXT2

28266 *

20267 41F5 BB 412C ADDM - ADD A CKADR+! LS BITS

29268 41F8 F9 4128 ADC B CKADR MS BITS

20269 41FB B7 412C ADDMI STA A CKADR+!

20270 41FE F71 412B STA B CKADR

20271 42081 39 RTS

20272 *

#0273 4202 BB 412C SUBM ADD A CKADR+1

02274 4205 24 85 BCC SUB1

@0275 4207 FB 4128 ADD B CKADR COMPUTER NOTES IS

20276 420A 20 EF BRA ADDMI MOVING. . .
90277 420C FB 4128 SUBl ADD B CKADR

82_7’8 420F ZA 5 gzc B

2275 4210 20 RA ADDM1]) ; .

00280 * The main editorial office
20281 4212 %D 425; RL Jls_R PgPlE OPRND .
20282 4215 FE 43A DX CREG i -
00283 4218 08 INX of Computer Notes will be loca
20284 4219 @8 INX . . .
20285 421A FF 412B STX CKADR ' ted at Pertec offices in Cali-
20286 421D B& 43A0 LDA A INST GET READY FOR JUMP .

20287 4220 BT 4227 STA A PSEUDO fornia.

20288 4223 B6 43A6 LDA A CCREG LOAD CNDTNS

20285 4226 96 TAP

002950 ok oKk Kk ko :) *
223D w227 B2 SSEUDO FoB 0.2 Due to the change in location
28292 e e o 2 ok ok ook ok . . .
20293 4229 20 BE BRA INDX3 DOES NOT JWP and editorial staff the publi-
20254 4228 @C REL2 CLC DOES JMP)

00255 422C 5F CLR B cation of the November and
o0557 4530 24 83" spr At 1s Jwp Pos or weG

2025 MP POS OR M ;

O9o38 4332 ap o3 BoR R oEm December issues has been
08299 4234 8C FCB $8C CPX

@0380 4235 8D BE REL3 BSR ADDM delayed.

@B301 4237 20 BS REL4 - BRA INDX5 MAKE SWAP

00302 *]

20383 4239 FE 435B RUNVCT LDX SWIADR RESTORE INSTR Manuscripts and letters may
20304 423C BS 43A0 LDA A INST

90305 423F AT 00 STA A X i

00305 423F AT 00 STA A X still be sent to the MITS
20387 4243 CE 43A6 LDX #CCREG .
00308 4246 33 Savi PUL B address. Watch the upcoming
20309 4247 ET 00 STA B X . .
20310 4249 08 INX issues of CN for the new mail-
@0311 424A 4A DEC A

00312 424B 26 F9 BNE 5aV1 ;

@0313 424D BF 43A4 STS STKHI ing address.

20314 4258 8D 1A BSR CKHUM CHECK HUMAN

28315 4252 FE 43AB RUN LDX PCREG

20316 4255 @9 DEX DUE TO SWI

80317 4256 FF 43AB RUN2 STX PCREG

@0318 4259 B6 43A0 LDA A INST

08319 425C 84 FQ AND A #$FQ CLEAR JNK

20320 425E 44 LSR A

28321 425F 44 LSR A

00322 4260 44 LSR A

#8323 4261 CE 43D3 LDX #TABLE-1 SET FOR JMP

20324 4264 B8 R1 INX

20325 4265 4A DEC A

CN/November 1977 continued on page Nineteen

String Character Editing Routine
Runs in BASIC

By Ken Knecht
1240 W. 3rd St.
Space 135
Yuma, Arizona 85364

If you read my article (*'Writing Ma-
chine Helps Prepare Manuscripts”) in the
July ‘77 Computer Notes, then you might
have noticed that I mentioned plans to
write a string character editing routine for
my word processor program. [also said
that 1 didn’t see how it could be done in
BASIC. Well, it can, and the following
article explains how to do it.

The heart of the program is lines 650-
651¢. This subroutine inputs a character
from the terminal without echoing it. The
routine supports a subset of the MITS SIOA
Rev. 1 1/0 board. Changes of the port
numbers and status flags will enable you to
use the 2S10 board.

Essentially, the program supports a
subset of the MITS BASIC character edit-
ing function. This version recognizes m)C,
(D, L, Q. 1, H, and X. These are usually
ample for most editing requirements. The
S would also be useful, so I may add it
later. The routine also recognizes the
delete (rubout, backarrow, or whatever)
command when in the insert mode (or after
X or H). Edit commands can be in upper or

lower case. As in MITS BASIC, editor
command letters and numbers are not
echoed.

Line Description

6@ ED=1: Set edit flag in my pro-
gram. The query gets the identi-
fying number of the string to be
edited in C. We transpose that
to D for the program, set some
program flags you don’t need to
be concerned with, get the length
of the string in Z4, and initialize
the variable.

Here we get the character inrmt
without echo in routine 6500.

Here we get the EDIT command in
upper or lower case.

Error signal (bell); if input is not in
edit routine repertoire, then the
bell is sounded, and we go back
to 6¢1¢ for a valid input.

Space input; if LE (length of edited
string is greater than Z4 (length
of original string), then 6120.

Space input; print next character in
string and transfer it to the edited
stting. Increment edited string
character count. Go get next
input character.

6010
6020-

6110
6120

6130

6140

Twenty

6150

6160
6170

6171
6172

6173

Numeric input; Z1$ contains the

. . 6174
numeric characters received so

far. Put number Z1$ or add to
number already there.

Get next character input.

C

Cinput; set up for (n) changes of C.

C

C

LIST

6000

60190
6020
60308
6040
6058
6060
6870
6089
6090
6100
6110
6120
6130
6140
6158
6160
6170
6171
6172
6173
6174
61889
6190
6200
6210
6220
6230
6249
6250
6268
6270
6272
6274
6275
6280
6290
6300
6310
6322
6339
2790
6340
6350
6360
6370
6380
63990
6408
6500
6510
OK

input; if no number prefix (Z18$),

then 6174. 6189

input; get next character. Print 6199

it. Add it to edited string.

input; back to 6171 if more char-
acters to change. When finish-
ed, add new characters to edited
string count. Put null in Z1$
(numeric input). Get a new
command.

6209

6000~

C input with no numeric prefix;
print new character. Add to
edited string character count.
Add edited character to edited
string. Get new command.

D input; if no numeric prefix then
6220.

D input with numeric prefix. Print
initial ““/”’. Set up character
deletion corresponding to nu-
meric input.

Print deleted characters as per
numeric input.

continued

ED=1:PRINT"WHAT IS THE LINE NUMBER?":INPUT C:D=C:2=2+1:CH(Z,8)=C:
GOSUB 3@18:2%24=LEN(C$):LE=1:D$="":218=""

GOSUB 65080

IF 2$=" "THEN 6130

IF 2$=>"1"AND 2$<="9"THEN 61580
IF 2$="C" OR 7$="c" THEN 6170
IF 2Z$="D" OR %$="d"THEN 6180
IF 2$="L" OR 2$="1"THEN 6230
IF 2$="Q" OR 25="q"THEN 6260
IF 2$="I" OR Z$="i" THEN 6270
IF 2$="X" OR 2$="x" THEN 6298
IF Z$="H" OR Z$="h"THEN 6320
IF Z$=CHRS$(13) THEN 6330
PRINT CHR$(7);:GOTO 6010

IF LE>Z4 THEN 6120

PRINT MID$(C$,LE,1);:D$=D$+MID$(C$,LE,1):LE=LE+1:GOTO 6010

IF 21$<>""THEN 215=215+2$ ELSE 21$=2$
GOTO 6018

IF 215=""THEN 6174

FOR Z2%=LE TO LE+VAL(Z1$)-1

GOSUB 6588:PRINT 2$;:DS=DS$+2$
NEXT:LE=22%:21$="":GOTO 6918

GOSUB 6500 :PRINT 2$;:LE=LE+1:D$=D$+2$
IF 21$=""THEN 6220

PRINT"\"; :FOR Z2%=LE TO LE+VAL(21$)-1
PRINT MIDS$(C$,22%,1); :NEXT
PRINT"\"; : LE=22%:21$="":GOTO 60819

:GOTO 6018

PRINT"\"; : PRINT MID$ (C$,LE,1); :PRINT"\"; :LE=LE+1:GOTO 6810

FOR Z2%=LE TO Z4

PRINT MIDS$(C$,22%,1);:DS=D$S+MIDS (C$,22%,1)
NEXT:C$=D$:D$="" : PRINT: 24=LEN(C$) : LE=1 :GOTO 6010

PRINT:D$="":GOTO 2780

GOSUB 6500

IF 2$=CHRS(127)THEN 6374

IF 2$=CHRS$ (27)THEN 6010

IF z$=CHR$ (13)THEN 6338
PRINT 2$;:D$=D$+2$:GOTO 6270
FOR 22%=LE TO 24

PRINT MIDS (C$,Z2%,1);:D$=DS+MIDS (C$,22%,1)

NEXT:LE=Z4:GOTO 6270
24=LE:GOTO 6278

IF LE=>Z4 THEN PRINT CHRS(13):D$=D$+CHRS (13):C$=D$:GOSUB 3120:GOTO

FOR 22%=LE TO 24

PRINT MIDS (C$,%2%,1);:D§=DS+MIDS (C$,22%,1)
NEXT : PRINT CHRS (13) :D$=D$+CHRS (13) :C$=D$:GOSUB 3128:GOTO 270

PRINT"\";

PRINT MIDS (DS,LEN(DS$),1);:D$=LEFTS$ (D$,LEN(DS)-1)

GOSUB 650@8:IF Z$=CHRS$(127)THEN 6380
PRINT"\"; :GOTO 6274

WAIT 0,801,801

22=INP (1)AND&0177:2$=CHR$ (22) : RETURN

CN/November 1977

6210

6220

62390

6249

6250

6260

6279

6272
6274

6275

6280

629¢
6300

6319

6320

6330

6349

6350

6360

Finished deletion. Print “‘/*’. Add
deleted character count to point-
er for original string. Put null in
Z1$. Get next comma or charac-
character.

D input with no numeric prefix.
Print initial ‘/’’. Print deleted
character. Pring final *‘/*.
Incremented original string
pointer. Get next command.

L input; set up move to the end of
the string.

Print all characters in the original
string to end and add to edited
string.

Transfer edited string to original
string variable. Initialize varia-
bles to new string. Get next
command.

Q input; put null in edited string.
Return to calling program.

Iinput; get next command or char-
acter,

Iinput; if rubout, then 6370,

I input; if escape, then get next
command.

I input; if carriage, return then
6330.

Iinput; if none of above, then print
character. Add to edited string.
Get next character or command
at 6279.

X input; set up loop to print re-
mainder of the line.

X input; print next character in
original string. Add to edited
string.

X input; loop to get next character.
If finished, set last character to
end of string. Go to 6279 and
insert mode.

H input; Make end of edited string
end of string. Go to 627¢ and
insert mode.

Carriage return. If at end of origi-
nal string, add carriage return to
edited string. Return to calling
program.

Carriage return. If not at end of
original string, set up loop to
print remaining character.

Carriage return. Print next charac-
ter in original string. Add to

edited string.

Loop back for next character. If
finished, print carriage return.
Add carriage return to edited
string. Return to calling pro-
gram.

CN/November 1977

6370
6380

6390

64900

6500

6510

TRACE PROGRAM Assembled Llisting continued

28326
20327
20328
28329
203308
28331

20332
20333
20334
00335
20336
20337
20338
8339
00340
28341

20342
28343
08344
20345
28346
00347
20348
28349
00350
20351

080352
20353
29354
28355
22356
28357
20358
20359
20360
20361

20362
20363
20364
008365
28366
03367
00368
20369
88372
00371

8372
20373
20374
8a375
20376
va31717
22378
20379
20330
020381

84382

Rubout mode. Print *“/”’.

Print last character. Delete last
character from edited string.

Rubout mode. Get next character
or command. If rubout, go to
6370.

Rubout mode. If character input in
6380 is not a rubout, then print
““/*’. Return to insert mode.

Wait for a character input from
terminal &01 is octal 1.

Character received. Mask to 7 bits
with octal 177. Change to single
character string. Return.

END

4266 2A FC BPL
4268 EE 0@ LDX
426A 6E 00 JMP

*
426C BD FF24 CKHUM JSR
426F 24 OA BCC

4271 BD FF34 CKHUM! JSR
4274 Cl 1B CKHUM3 CMP B
4276 26 03 BNE
4278 TE 4007 Jmp
4278 39 CKHUM RTS

*
427C BC 43Bl EXMDR CPX
427F 27 2E BEQ
4231 B6 43AE LDA A
4284 F6 43AD LDA B
4287 30 @1 SUB A
4289 C2 @0 SBC B
4288 B@ 412C SUB A
428E F2 4128 SBC B
4291 25 06 BCS
4293 BC 43B3 EXMOP CPX
4296 27 17 BEQ
4298 39 EXI RTS
4299 B6 43B0 EX2 LDA A
425C F6 43AF LDA B
429F BB 412C SUB A
42A2 F2 4128 SBC B
4245 25 FI BCS
42A7 86 54 EX3 LDA A
4249 BT 439F STA A
42AC TE 431A Jmp

*
42AF 86 42 BKPT LDA A
42B1 TE 4956 Jup

*
42B4 BE 43A4 REPAK LDS
4287 86 @7 LDA A
42B9 CE 43AC LDX
42BC E§ @8 REPI LDA B
42BE 37 PSH B
42BF @9 DEX
42C0 4A DEC A
42C1 26 F9 BNE
42C3 FE 43AB LDX
42C6 FF 412B STX
42C9 BD 427C JSR
42CC CE FCB
42CD 00 HERE FCB
42CF AS 00 LDA A
42Dl B7 43A0 STA A
42D4 86 3F LDA A
42D6 AT 00 STA A
42D8 FF 439B STX
4218 3B RTI

*
42DC 4F POP® CLR A

Rl
X
X

POLCAT
CKHUMZ
INCH+4
#$1B
CKHUM2
DEBUG

BIADR
BKPT
TON+1
TON
#1

#0
CKADR+1
CKADR
EX2
BOADR
BXPT

TOFF+1
TOFF
CKADR+1
CKADR
EX1

#°T
WHAT
PRNTRG

#°'B
DMP1

STKHI
#17
#PCREG+]
X

REP1
PCREG
CKADR
EXMDR
$CE
2,0

X
INST
#S3F

X
SWIADR

continued on page 22

TAKE JMP

HUMAN WANT CONTROL?
NO

ESCAPE?
NOPE

SCRAM

BACK YOU GO

INST BKPNT?

CRRCT FOR CARRY

OPRND BKPNT?

DMP & RTRN

PRINT & EXEC

REPAK STACK

ANYTHING GOING ON?

GO SEE
LDX #

NO OPRND

Twenty-One

20383

#0334
00335

223336
208337
29388
28389
08350
23391

22392
28393
20354
20395
283956
28397
00398
20399
00400
20401

20402
20403
00404
20405
20408
02407
20408
803409
09410
20411

20412
20413
20414
20415
P0416
28417
20418

20419
20420
20421
28422
20423
08424
20425
20426
20427
02428
20429
20430
po4a3l
00432
20433
80434
20435
80436
00437
20438
20439
00440
83441
20442
80443
22444
20445
20446
00447
03448
60445
B0450
Av45 1
08452
20453
20454
20455
20456
28457
00458
90459
Vo460
@0461
20462
20463
BR464
BYASS

TRACE PROGRAM Assembled Listing continued

42DD
42 ED
42 El
42E3
42 F5
42E8
A2EA
42 D
42 EE
42F0
42F2
42F4
42F7

42F8
42FA
42FD

42 FF
4301
4302
4304
4306

43817
43089
438C
430F
4311

4313
4315
4318

4314
431D

4320
4323
4325
4328
4324
432D
432F
4332
4335
4338
4339
4338
433K
4341

4343
4345

4341
4349

434C
434D

434E
4350
4352
4353
4355
4356
4357
4358
435A
435C
435F

4360
4363
4366

4369
436B

436D
4379

4372
4374
4375

B7
39
86
8D
FE
£6
F1
39
86
8D
ES
F7
39

8D
BD
20

86
8C
86
97
39

8D
BD
F7
8D
20

43473

(43
F8
43AB
[}
43A1

02
F1
a2
4342

285
FF62
23

23

FF
F3

F§
FFOO
439F
52
EF

8D EA

BD
20

CE
BD

Fe
8D
B6
8D
B§

Twenty-Two

B2A
09

18

F4
29
434D

FF8l
FF82
426C

F8
F§

FF&D
Fl

POPI

P OP2

BAD

EON
EQF

*
PRNTRG

PRN3
PR N2
PRNI

STA
RTS
LDA
BSR
LDX
LDA
STA
RTS
LDA
BSR
LDA
STA
RTS

BSR
JSR
BRA

LDA
FCB
LDA
STA
RIS

BSR
JSR
STA
BSR
BRA

BSR
JSR
BRA

LDX

JSR
LDA
BSR
LDA
BSR
LDA
BEQ
LDA
JSR
LDA
DEC
BEQ
LDA
JSR
BRA
BSR
BSR
BSR
LDX

KAk AR K

HMNY

FCB
FCB

kAR K

PRNLP

PR N4

PNT1
PNTS
PNTC
*

XX
*
ouT2

*
PRMPT

BEQ
LDA
PSH
BSR
PUL
INX
DEC
BRA
LDA
STA
RTS

JSR
JSR
JwpP

BSR
BRA

JSR
BRA

FCB
FCB
FCC

> >

>» » » w

>

> > w w w >

ASCFG

#1
POPO+ 1
PCREG
1,X
INST+!

#2
POP1+2
2,X
INST+2

EON
BADDR
EOF

#%$03
$8C

#SFF
ECHO

EON
INCH
WHAT
PNTS
EOF

EON
BYTE
EOF

#MES4

MSG
WHAT
PNT!
INST
ouT2
ASCFG
PRN3
INST*I
OUT2H
ASCFG

PRN2
INST+2
OUTZ2H
PRN1
XX

XX

XX
#STKHI

$C6
S

PRN4
X

ouT2

PRNLP
HMNY
OUTCH

oUTS
CKHUM

PNTS
PNTS

OUT2H
PNTS .

$0D, $04A

$FF
/@ /

ECHO ON
GET ADDR
CPX

WHAT TYPE DMP
INST

OPRND?
NONE

MORE?
NOPE

(LDA B #)

FORM RSET

00466
po4s7
20468
#0465
20470
20471
20472
20473
20474
20475
02476
20477
00478
22479
00488
00431
00482
00483
20484
20435
20486
22487
P@438
20489
00450
80451
20452
00453
88454
20455
20496
22457
00498
20499
22500
20501
225 @82
20503
025 24
20525
225086
22587
08508
225 89
00510
22511
20512
80513
00514
82515
20515
02517
29518
20519
20520
p@521
20522
20523
20524
20525
20526
00527
20528
20529
20530
28531
20532
00533
80534
22535
20536
20537
20538
00539
20540
20541
20542
20543
00544

TOTAL
ENTER

4377 00

4378 8D
437A FF
437B 44
4380 @9

4381 20
4385 00

438A 0D
438C FF

438E 2A
4395 9@

4396 3FFF
4398 09
439A 00
4398 00
439D 00

439F 008
43A0 3F
43A3 00
A3A4 00
43A6 00
43A7 00
43A8 00
43A9 20
43AB 0@
43AD FF
43AF 00
43B1 00
43B3 00

4385 4D
43B6 406E
43B8 43
43B9 4099
43BB 42
43BC 4PAl
43BE 41
43BF 48AS
43C1 58
43C2 4@B1
43C4 54
43C5 4@76
43C7 4F
43C8 4089
43CA 49
43CB 4P82
43CD 4A
43CE 4988
4300 44
43Dl 4959
43D3 00

43D4 4189
43D6 4189
43D8 4212
43DA 4189
43DC 4189
43DE 4189
43E@ 41CE
43E2 48D5
43E4 4165
43E6 40C2
43E8 4iCE
43EA 4005
43EC 4165
43EE 40C2
43F2 AICE
43F2 40D5

BOF3
Q9F3 @3

ERRORS 000200
PASS

TRACE PROGRAM continued on page32

MES

*
MES2

MES4

MYSTX
STKIMP
SUBCNT
SWIADR
STKSV

WHAT
INST
ASCFG
STKHI
CCREG
BREG
AREG
XREG
PCREG
TON
TOFF
BIADR
BOADR

JMPTB

*
TABLE

FCB

FCB
FCB
FCC
FCB

FCC
FCB

FCB
FCB

FCC
FCB

FDB
FCB
FCB
FCB
FCB

FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCB

FDB

FDB
FDB
FDB
FDB
FDB
FOB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

ORG
FCB

END

e (

$0D,304A
$FF
/DEBUG/
)

/ ADDR ? /
[} a

$0D,30A
$FF,0

/*ERROR* /
]

-
>

RT-1

- .

P Suesn
[S

w
£
o
|

i 4

[

[SE RN SRS SE SR SRSEN

/M/ MONITOR
MONIT

/C/ CREG
STC

/B/ BREG
STB

/A/ AREG
STA

/X/ XREG
STX

/T/ TRACE
TSET)
/0/ OPR BKPT

BO

/1/ INST BKPT
BI

/d/ JMP

JMPXX

/D/ DMP REG
DMP

"]

INHER
INHER
REL
INHER
INHER
INHER
INDX
EXT
MM
DIR
INDX
EXT
MM
DIR
INDX
EXT

$00F3
303

CN/November 1977

Computer Evaluates Human Logic

A Generalized Version of
“Master Mind” for Computers

By Doyl Watson
MITS

Master Mind is a popular board game
marketed by Invicta Plastics LTD. of Lei-
cester England. Based on logic, it involves
two players--the code maker and code
breaker. Since the AltaitT'Mmicrocomputer is
an ideal code maker which can easily eval-
uate each play the code breaker makes,
I’ve adapted Master Mind into the follow-
ing computer program. Because it’s more
general than the board version, it’s even
more challenging and fun.

The object of the game is for the code
breaker to guess a sequence of colors
which has been preset by the code maker.
Each time the code breaker tries guessing
the ordered list of colors, the code maker
responds with the score or evaluation for
that guess. The score consists of two
numbers: (1) the number of colors that
have been guessed correctly and in the
correct positions, and (2) the number of
additional colors that have been guessed
but incorrectly positioned. At the end of
each round, the number of guesses taken
by the code breaker is tallied and then used
as a criterion for how well the player has
done. For a given number of positions and
colors, two code breakers can compare the
number of guesses that they used to break
the code.

For example, you've already request-
ed that the computer set up a secret color
code using three colors and three positions.
Suppose that code is, ‘“‘RED, BLACK,
BLACK.” (Notice that repititions are
allowed.) Now suppose your first guess is,
“BLACK, WHITE, BLACK”’. The compu-
ter would then respond with three num-
bers. First, the number of correct colors
in the right positions =1. (BLACK in the
third position of the code matches the
BLACK in the third position of the guess.)
The second number representing addition-
al correct colors in the wrong places is 1.
(BLACK in the second position of the code
matches BLACK in the first position of the
guess.)

CN/November 1977

pEm——

i
BT
{

———— S
AR

R TR

oz

st

The following program enables the
computer to set up a pseudo-random color
code when the code breaker enters the
number of colors and the number of posi-
tions he or she is willing to guess from.
(Obviously, difficulty increases with the
number of colors or with the number of
positions.) The code breaker also must

enter a random number from 1 to 10. The
computer will then ask ‘““What is your
guess.”’” The breaker will respond with a
guess, and the computer will then evaluate
the guess. The game proceeds accordingly
until the code breaker has built up a table
of enough guesses and evaluations to
deduce the color code.

SAMPLE GAME PRINTOUT

INSTRUCTIONS FOR “LOGIC':

DEDUCE THE SECRET COLOR CODE

AFTER ENTERING TRIAL LISTS OF COLORS. ENTER THE
FIRST 3 LETTERS (AT LEAST) OF EACH COLOR

SEPERATING ENTRIES BY COMMAS.

WHEN COMPUTER RESPONDS WITH THE EVALUATION FOR EACH GUESS,
“TRU’ 1S THE NUMBER OF CORRECT COLORS WHICH ARE ALSO IN

THE TRUE POSITIONS. “XTR’

IS THE NUMBER OF ADDITIONAL

COLOR MATCHES WHICH ARE IN THE INCORRECT POSITIONS.
“GSS’ IS THE NUMBER OF GUESSES THAT HAVE BEEN TAKEN.

ENTER:
76, 4

NUMBER OF COLORS, NUMBER OF POSITIONS

ENTER A RANDOM NUMBER FROM 1 TO 10

73

COLORS BLACK,WHITE,RED,YELLOW,GREEN,BLUE

ENTER YOUR GUESS HERE
?BLA, BLU, GRE, YEL

?BLA, WHI, YEL, RED
?YEL, YEL, WHI, BLA
?WHI, YEL, YEL, BLA

?WHI, YEL, BLA, YEL
YOU ARE CORRECT!!! 1IN 5

EVALUATIONS APPEAR HERE

TRU= 1 XTR= 1 GSS= 1
TRU= 0 XTR= 3 GSS= 2
TRU= 1 XTR= 3 GSS= 3
TRU= 2 XTR= 2 GSS= &

GUESSES.

Twenty-Three

Program

Logic 10 PRINT"INSTRUCTIONS FOR ‘LOGIC’: DEDUCE THE SECRET COLOR CODE
‘“Master Mind”’ 20 PRINT" AFTER ENTERING TRIAL LISTS OF COLORS. ENTER THE"
30 PRINT" FIRST 3 LETTERS (AT LEAST) OF EACH COLOR
continued 40 PRINT" SEPERATING ENTRIES BY COMMAS."
50 PRINT"WHEN COMPUTER RESPONDS WITH THE EVALUATION FOR EACH GUESS,"
60 PRINT" ‘TRU’ IS THE NUMBER OF CORRECT COLORS WHICH ARE ALSO IN"
70 PRINT" THE TRUE POSITIONS. ‘XTR’ IS THE NUMBER OF ADDITIONAL"
80 PRINT" COLOR MATCHES WHICH ARE IN THE INCORRECT POSITIONS."
90 PRINT" ‘GSS’ IS THE NUMBER OF GUESSES THAT HAVE BEEN TAKEN."
95 REM
100 REM -MAIN PROGRAM-
110 REM
120 PRINT

130 PRINT"ENTER: NUMBER OF COLORS, NUMBER OF POSITIONS"

140 INPUTC,N

150 IFC=1THENST$="BLACK":G0T0250

160 IFC=2THENST$="BLACK,WHITE":G0T0250

170 IFC=3THENST$="BLACK,WHITE,RED":G0T0250

180 IFC=4THENST$="BLACK,WHITE,RED,YELLOW" :G0OT0250

190 IFC=5THENST$="BLACK,WHITE,RED,YELLOW,GREEN":GOT0250

200 IFC=6THENST$="BLACK,WHITE,RED,YELLOW,GREEN,BLUE":G0T0250

210 IFC=7THENST$="BLACK,WHITE,RED,YELLOW,GREEN,BLUE,ORANGE" :GOT0250

220 IFC=8THENST$="BLACK,WHITE,RED,YELLOW,GREEN,BLUE,ORANGE, PURPLE" :GOT0250
230 IFC=9THENST$="BLACK,WHITE,RED,YELLOW,GREEN,BLUE,ORANGE,PURPLE,GOLD"
240 IFC=10THENSTS$="BLACK,WHITE,RED,YELLOW,GREEN,BLUE,ORANGE,PURPLE,GOLD,GRAY"
250 PRINT"ENTER A RANDOM NUMBER FROM 1 TO 10"

260 INPUTR

270 GOSUB 770: REM GET COLOR CODE.

280 PRINT"COLORS ";ST$

290 PRINT"ENTER YOUR GUESS HERE";TAB(48);"EVALUATIONS APPEAR HERE"

300 FORJJI=I1TON

310 CC$(JJ)=M$(C, 1+ABS(JJI-R)) :REM. CODE GENERATOR

320 NEXTJJ

330 REM GUESSES ENTERED HORIZONTALLY.. SEPERATED BY COMMAS.

340 IFN=1THENINPUTGS$(1):GOTO0440

350 IFN=2THENINPUTGS(1),G$(2):G0T0440

360 IFN=3THENINPUTGS$(1),G$(2),G8(3):G0T0440

370 IFN=4THENINPUTGS$(1),G$(2),G$(3),G$(4):G0T0440

380 IFN=5THENINPUTGS$(1),G$(2),G$(3),68(4),GS$(5):G0T0440

390 IFN=6THENINPUTGS$(1),G65$(2),G$(3),68(4),68(5),G5(6):G0T0440

400 IFN=7THENINPUTGS$(1),658(2),65(3),G$(4),G5(5),G65$(6),G$(7):GOT0440

410 IFN=8THENINPUTGS$(1),G$(2),68(3),65(4),G$(5),G$(6),G6$(7),G8$(8):G0T0440
420 IFN=9THENINPUTG$(1),G$(2),G$(3),65(4),G6$(5),G$(6),G$(7),G$(8),G$(9)
430 TFN=10THENINPUTGS$(1),G$(2),6$(3),68$(4),68(5),6$(6),G%(7),6$(8),G5(9),G5$(10)
440 GOSUB530 :REM MAKE EVALUATION OF THE GUESS.

450 IFB=NGOTO0480: REM GUESS IS CORRECT.

460 PRINTTAB(48);"TRU=";B;" XTR=";W;" GSS=";T

470 GOTO300

480 PRINT" YOU ARE CORRECT!!! IN ";T;" GUESSES."
490 END

500 REM

510 REM ~GUESS EVALUATION-

520 REM

530 B=0:W=0

540 FORK=I1TON

550 REM FIRST 3 LETTERS OF GUESS COMPARED TO FIRST 3 OF ANSWER.
560 IFCC$(K)<>LEFT$(GS$(K),3)THENGOT0620

570 B=B+1
580 REM POSITIONS ALREADY MATCHED ARE MADE UNIQUE SO THAT-
590 REM NO ENTRY IS TALLIED TWICE.

600 CC$(K)=CHRS$(K+11)

610 G$(K)=CHRS$(K+22)

620 NEXTK

630 FORK=1TON

640 FORJ=1TON

650 IFCCS(K)<>LEFT$(G$(J),3)THENGOTOT700

660 W=W+1

670 CC$(K)=CHR$(K+11)

680 G$(J)=CHRS(K+22)

690 J=N

700 NEXTJ:NEXTK

710 T=T+1

720 RETURN

730 REM

740 REM ~RANDOM DATA-

750 REM

760 REM DATA SHOULD BE CHANGED OCCASIONALLY.
770 FORP=1TO010

780 FORQ=1T010

790 READMS(P,Q)

800 NEXTQ:NEXTP

810 DATABLA,BLA,BLA,BLA,BLA,BLA,BLA,BLA,BLA,BLA
820 DATAWHI,BLA,WHI,BLA,WHI,BLA,BLA,WHI,WHI,BLA
830 DATARED,BLA,RED,WHI,RED,BLA,BLA,WHI,RED,RED
840 DATABLA,RED,BLA,RED,YEL,YEL,WHI,WHI ,RED,WHI
850 DATAGRE,YEL,YEL,BLA,RED,WHI,BLA,RED,RED,YEL
860 DATABLA,YEL,WHI,RED,GRE,BLU,GRE,BLA,BLU,BLU
870 DATAORA,YEL,GRE,RED,WHI,BLA,BLA,ORA,RED,YEL
880 DATABLU,BLU,BLU,GRE,ORA,RED,WHI,PUR,RED,BLU
890 DATAYEL,GRE,PUR,ORA,BLA,GOL,WHI,GRE,BLU,WHI

900 DATAGOL,GRA,RED,YEL,PUR,ORA,BLA,GRE,RED,GOL CN/November 1977
Twenty-Four 910 RETURN

Letter Writing Program Solves Photographers Mailing Problems

CN/November 1977

1@ REM LETTER WRITING PROGRAM--INSERT LETTER BODY FROM 20¢ TO
12 REM 279. DATA FROM 1008 AND UP

20 PRINT “FUNCTIONSI™3TABC1IS)"(1) LI1ST DATA STATEMENTS"
25 PRINT TABC15)"(2) PRINT MAILING LABELS"$PRINT TAB(15)*(3) VPITE LETTE
Rs'l

30 PRINT TABC(15)"(4) PRINT °*TOWN CODE'"

35 INPUT “FUNCTION ¢ 1,2,3, OR 4)"3K

40 IF K=1 THEN GOSUB 100@03LIST 999

48 IF K=2 THEN RN 600

58 1F K=3 THEN RUN 98

55 IF K=4 THEN GOTO 65

60 PRINT"PLEASE ANSWER 1, 2, 3, OR 4":160TO 35

65 GOSUB 100803 PRINT:PRINT"-- TOWN CODE --*

67 FOR J=1 TO 18tPRINT J3* -~ "3

70 ON J GOSUB 700,705, 71@, 715,728,725, 738, 735, 7408, T4S
75 PRINT Cs¢J)

88 NEXT J

85 GOSUB lee2e

90 GOTO 35

95 INPUT"DATE"3D$3GOSUB 10000

97 J=0

180 READ AS,BS.,CS

19! IF AS="END" THEN GOSUB 10020

1082 J=VAL(CS)

164 IF J=9p THEN GOTO 110

106 ON J GOSUB 708, 785,710,715, 720, 725, 730, 735, 740, 74S
198 Cs=CscJ)

118 FOR I=] TO 10:PRINTINEXT I

126 FOR I=1 TO 723PRINT"&";sNEXT 1

138 PRINT:PRINTIPRINT DS

142 FOR 1=] TO 4sPRINTINEXT I

15@ PRINT"WILKINSON STUDIO":PRINT"2308 NEW WALLAND HWY"
168 PRINT"MARYVILLE, TN. 37801"

178 FOR I=1 TO T:PRINTINEXT 1

180 PRINT AsSt PRINT BS: PRINT C$

185 PRINTsPRINT

198 PRINT“DEAR ";3GOSUB S@@3tPRINT"3*

199 PRINT REM BODY OF LETTER FROM 20¢ TO 279
286 PRINTIPRINT"SINCERELY, "sPRINT

290 PRINT"LEE VILKINSON"3$ PRINT“PHONE 982-67023"

382 FOR I=! TO l1sPRINTINEXT I

385 GOTO 190

SO0 FOR I=] TO B:PRINT MIDSCAS,1,1);

505 C=@

510 IF MIDSCAS,1,1)=" * THEN [=8

520 NEXT I

538 X=LENCAS)

540 FOR I=X TO 1 STEP =~}

558 C=C+1!

568 IF MIDS(AS,1,1)=" " THEN I=])

570 NEXT 1

580 PRINT RIGHTS(AS,C)J 1 RETURN

598 REM SUB ROUTINE FOR MAILING LABELS ~-- TYPE END, END, END FOR THE
$99 REM LAST THREE LINES IN THE DATA STATEMENTS --
600 GOSUB 10008

605 DIM ASC2),BS(2),C8(2)

610 1=@1J=0

628 FOR I=1 TO 2

630 READ ASC1),BS(I),CsCl)

632 T=VAL(CS(I))

634 1F T=@ THEN GOTO 640

636 ON T GOSUB 780,785,710, 715, 720, 725, 730, 735, 748, 745
638 CS(1)=Cs$(J)

640 NEXT I

6352 PRINT ASC1) TAB(J8) AS(2)

660 PRINT B3(1) TAB(38) BS(2)

678 PRINT CS$C1) TAB(38) C$<2)

675 IF AS(2)="END" THEN GOSUB l0oge

680 PRINT$PRINT: PRINT: REM SPACES BETWEEN LABELS
698 GOTO 620

699 REM DATA FOR CITY CODES

700 C$(J)="MARYVILLE, IN. 37801"sRETURN

7065 C$CJI="ALCOA, TN. 37701"3$RETURN

710 CS(J)s"FRIENDSVILLE, TN. 37737"sRETURN

715 C$(J)="GREENBACK, TN. 37742"1RETURN

720 C$(J)="LOUISVILLE, TN. 37777“$RETURN

725 CS(JI="MENTOR, TN. 37€08*31RETURN

730 C$(J)="ROCKFORD, TN. 37853"tRETURN

735 C$(J)="SEYMOUR, TN. 37865"3sRETURN

748 CS$C(JI="TOWNSEND, TN. 37882"31RETURN

745 CS$C(J)="WALLAND, TN. 37886"tRETURN

999 REM DATA STATEMENTS FROM 10¢8 AND UP
9997 REM

continued on page 26
Twenty-five

Letter Writing Program Solves Photographer’'s Mailing Problems

. Twenty-six
K

continued
9998 REM
9999 REM SUB-ROUTINES FOR HARD COPY %kkkx
19008 INPUT"WANT HARD COPY™IHS
12885 1F LEFTS(HS, 1)<>"Y" THEN RETURN
18008 PRINT"TURN ON PRINTER ~- PRESS SPACE BAR“:WAIT 8, 1,1
10619 POKE1352, 203 POKE1360, 211 POKE1367, 281 POKEL1374, 21: PETURN

18620 POKE1352,@:POKE136@, 1t POKEL 367, @t POKEI374, 1t RETURN
0K

Sample Letter

200040 20 e ok o o o R 2 K a0 K K 2 e 0 e e o ol ko o e e 30 30 a3 ol ok ok o ok o ok ke R R R I oK ok R R

OCTOBER 1 1977

VILKINSON STUDIO
2398 NEW VALLAND HVY
MARYVILLE, TN. 37881

MRS. GEORGE JONES

123 ANYSTREET
MARYVILLE, TN. 378081
DEAR MRS. JONES:

*#%x%%% HAPPY BIRTHDAY TO BABY ##x%xx

TO HELP CELEBRATE BABY'S BIRTHDAY WE HAVE A SPECIAL OFFER
FOR YOUR FAMILY.

*%x 6 MONTH BIRTHDAY SFECIAL *x

1 - 8 X 12 COLOR PORTRAIT FOR YOURSELVES
2 - 5 X 7 COLOR PORTRAITS FOR GRANDPARENTS

ALL FOR ONLY $19.95 x&x&&x

AND MRS. JONES, IF YOU'LL CALL US WITHIN 3 DAYS OF RECEIPT
OF THIS LETTER WE VWILL INCLUDE WITH YOUR BIRTHDAY SPECIAL
PACKAGE» ABSOLUTELY FREE, 8 COLOR WALLETS.

REMEMBER MRS. JONES, TIME FLIES SO CALL US TODAY !
SINCERELY.,

LEE WILKINSON
PHONE 982-6783

Sample Listing

LIST 199
199 PRINT 13 REM BODY OF LETTER FROM 28¢ TO 279
208 PRINT" #=xxxx HAPPY BIRTHDAY TO BABY s%xxx'

216 PRINT:PRINT"TO HELP CELEBRATE BABY'S BIRTHDAY WE HAVE A SPECIAL OFFE
R

220 PRINT"FOR YOUR FAMILY.":PRINT

230 PRINTTAB(2@)"#% & MONTH BIRTHDAY SPECIAL #x":;PRINT

235 PRINT"] - 8 X 18 COLOR PORTRAIT FOR YOURSELVES™

248 PRINT”2 - 5 X 7 COLOR PORTRAITS FOR GRANDPARENTS":PRINT

245 PRINT"ALL FOR ONLY $19.95 ®%#%x&"3;PRINT

250 PRINT"AND *"3:GOSUB SO@:tPRINT", IF YOU'LL CALL US WITHIN 3 DAYS OF PE
CEIPT"

255 PRINT"OF THIS LETTER WE WILL INCLUDE WITH YOUR BIRTHDAY SPECIAL™

268 PRINT"PACKAGE, ABSOLUTELY FREE, 8 COLOR WALLETS."

265 PRINT:PRINT“REMEMBER "3 :1GOSUB S0@:PRINT", TIME FLIES SO CALL US TODA
Y 1

280 PRINT:PRINT"SINCERELY,"sPRINT

298 PRINT"LEE WILKINSON":PRINT'PHONE 982-6783"

CN/November 1977

AUDIOSYNCRACIES is a three-part
series devoted to exploring unconventional
applications of the Altair 88-AD/DA board.
Hardware and software theory and imple-
mentation of the board in the Altair 8800
series mocrocomputers will be covered.

Part I includes: Theory of the audio
delay line, a simple audio delay line for
producing echo effects, and a description
of interface circuitry for this and sub-
sequent audio application articles.

Audio signal processing is one of the
more fascinating applications of the Altair
88-AD/DA board. This board’s high speed
of analog to digital conversion makes it
particularly suitable for good quality digi-
talization of audio information.

One especially interesting application
if the creation of audio delays using the
88-AD/DA board. By taking an audio
signal, delaying it, and then recombining it
with the original signal, a variety of inter-
esting echo and reverberation effects can
be produced. In the past, echo effects were
produced by a tape loop. A diagram of this
method is shown in Figure 1. The audio
signal is recorded onto the magnetic tape
loop by the record head and then played
back off the tape by the multiple playback
heads. The distance between the record
and playback heads determines the amount
of time that passes until an echo is heard.
The number of echos that are heard is
determined by how many playback heads
the tape passes over after it passes the
record head. There is a disadvantage
to this method: it requires a tape trans-
port, and magnetic tape is one of those
mediums that deteriorates with age.

In this first article, we will explore the
advantages of using the 88-AD/DA and the
Altair computer to implement a solid-state
no-moving-parts system which will per-
form this echo function in addition to pro-
ducing several other interesting effects.
SOFTWARE

The method for producing the echo
effect is shown in flowchart form in Figure
2. After briefly studying the flowchart, you
will notice that we are essentially imitating
the tape loop echo method, but the medium

CN/November 1977

AUDIOSYNCRACIES

Unique Audio Processing Applications of the 88-AD/DA

is the memory of the computer, and the
“‘record’’ and ‘‘playback’’ head functions
are implemented in software. The ‘‘re-
cord”’ function is accomplished by using
pointer HL to write the digitalized audio
information into memory. The ‘‘playback’’
function is accomplished by using pointer
DE to retrieve the information from
memory. Both pointers are simultaneously
stepped through memory, but pointer DE
runs behind pointer HL. The time it takes
for pointer DE to reach and read data from
the same point in memory that pointer HL

_ has written data into, determines the delay

time until the echo of the original signal is
heard. As each pointer reaches the top
limit of memory, it is reset back to the
beginning, giving us a continually running
loop. The amount of time that passes until
the echo of the original signal is heard is
determined by the difference in starting
points of pointers HL and DE. The offset
can be any value you choose, so a wide
variety of delay times are possible. The
maximum amount of delay is, of course,
limited by the amount of memory in the
computer. To obtain the maximum delay
time, set pointer HL to the middle of the
memory space and set pointer DE to the
beginning of the memory space. For this
first experiment, we will produce only one
echo. The machine code program for our
delay function is shown in Listing 1.
HARDWARE

To properly interface the 88-AD/DA
with real world audio signals, you need to
construct one relatively simple circuit.
(See Figure 3.) The top half of this circuit
takes a real world audio signal and shifts it
into the voltage range acceptable by the
88-AD/DA’s input. The voltage at the
input of the 88-AD/DA must not be lower
than ground and higher than 10 volts.
Since audio signals usually go both above
and below ground, the input conditioning
circuit shifts the entire audio signal up-
wards so that all signals are above ground
and below 10 volts. The two diodes at the
output of the circuit ensurethat the signal
reaching the 88-AD/DA doesn’t exceed the
0-10 volt range. The OP-AMP in this
circuit can be just about any general pur-

By Thomas G. Schneider
MITS

pose OP-AMP, like the 741, for example.
The bottom half of the circuit in Figure 3 is
used to mix the output of D/A convertor
and the original input signal before these
signals go out to the real world.

To adjust this interfacing circuitry, use
the following procedure. Adjust the origi-
nal signal gain pot and the delay gain pot
to their positions of highest resistance.
Adjust the input signal gain pot to its posi-
tion of least resistance. With no input
signal applied, adjust the offset pot so that
5 volts appears at the output of the OP--
AMP. Apply an audio signal typical of
what you will be running into the system
and adjust the input signal gain pot so that
the voltage at the output of the OP-AMP
swings no more than about seven volts
peak-to-peak. After toggling in the pro-
gram, hit run and adjust the output mixing
pots to obtain a pleasant mix of the original
and delayed audio signals.

Referring again to the software, you
can easily change the delay time by in-
creasing or decreasing the starting address
of the HL register. To run this software in
your Altair computer, it may be necessary
to change a few things in the program, de-
pending on how much memory is available.
The contents of the following addresses are
important:

41 and 42 contain the starting address

of the write pointer.

44 and 45 contain the starting address
of the read pointer.

53 and 64 contain the most significan
byte of the highest memory addres»
used as storage space.

When modifying this program to suit
your memory size, be careful not to write
over the program. One thing to remember
about audio modification programs...don’t
be afraid to modify the program itself.
You may be surprised with some bizarre
and unusual results!

Next month, AUDIOSYNCRACIES
will cover a more flexible software routine
for the audio delay line and interface
circuitry modifications for producing con-
tinuously recirculating echo effects.

continued on page 28

Twenty-seven

AUDIOSYNCRAC I Es continued

FIGURE 1

/ MAGNETIC TAPE LOOP
X AUDIOIN ‘/ /O\

< AUDIO

I s A

RECORD HEAD PLAYBACK HEADS

e a4

AUDI
ouT

\]

TAPE MOTION

INITIALIZE
START 88-AD/DA

BOARD
, FIGURE 2
INITIALIZE
READ & WRITE
POINTERS
Y
START
CONVERSION
SET HL TO
AJIET&I; OF ™, YES | BOTTOMOF
RY2 MEMORY
NO
DE AT YES SET DETO
<~ TOPOF > = .1 BOTTOM OF
WORYM MEMORY
,‘r/
NO
GET AUDIO INPUT
AND STORE AT HL
GET DATA AT
opred | —| BT
TO REAL WORLD |

Twenty-elght

! 1
14

CN/November 1977

AUDIOSYNCRACIES e

N L2 A /A) i)/’,,,)
LoV TE = B 450
- -+t
4 ’o\/ /2 k14 7[‘]
S0k
§ @reur sicva GAILN)

AL - Dy

f ,

220 25 P

Auvoro IN ._| F—an— ING/ % CoOMMECTen
2k P> +iov
A

+loV L5V 21V 0

L"Mj— h /i INT 1 4 /;—’ PN 2.

10k
(orescr)
L ok Beiar 64170)
> 2 » CIN 24
/0K
(O‘f/('-a/»’/‘;. S/Garty ¢4;27) il 11
i ”

Aupto our 2.2.}”[

/'L /_i 1K NOTE: DP-AMA PN aUT /L

FoLl 741 DP-~-AMP

FIGURE 3
continued on page 30

Twenty-nine

CN/November 1977

AUDIOSYNCRACIES co-tines

Thirty

AUDIO DELAY SOFTWARE (ASSUMES A/D-D/A BOARD IS8 AT OCTAL ADDRESS 100)

10

i1

12

13

14

19

16

17

20

21

22

23

24

25

26

27

30

31

32

31

34

35

36

37

40

41

42

43

44

2357
323
100
323
101
323
102
323
104
323
106
0987
323
103
323
105
323
107
076
054
323
100
323
102
323
104
323
106
000
[e[e]0)
000
000
041
000
020
ozt

000

INIT, XRA

ouT

ouT

ouT

ouT

ouT

CHMA

ouT

ouT

ouT

MoV

ouT

QuT

ouT

ouT

NOP

NOP

NOP

NOP

START, LXI H,020/000

LXI D, 001/000

A

100

101

i02

104

106

103

105

107

A, 054

100

102

104

1046

continued

PROGRAM LINES O — 33 INITIALIZE

THE A/D-D/A BOARD

LOAD HL WITH WRITE

POINTER STARTING ADDRESS

LOAD DE WITH READ

POINTER STARTING ADDRESS

CN/November 1977

CN/November 1977

45

46

47

S0

51

S2

53

54

48

56

57

&0

61

&2

&3

&4

65

&6

&7

70

71

72

73

74

75

76

77

100

101

102

103

104

103

106

107

001
257
323
103
174
376
200
302
062
000
076
001
147
172
376
200
302
073
000
076
001
127
333
101
167
353
176
323
105
353
043
023
303
000

000

CONV,

CHKH,

CHKD,

INPT,

XRA

ouT

MoV

CPI

JINZ

MVI

MoV

MoV

CPI

WNZ

mMvI

MoV

INP

Mav

AUDIOSYNCRACIES -

103

A H

200

CHKD

A, 001

H, A

A D

200

INPT

A, 001

D. A

101

M, A

XCHG

Mov

ouTt

AM

105

XCHG

INX
INX

JMP

H

D

CONV

QUTPUT A O TO PORT 103

TO START CONVERSION

SEE IF HL POINTER HAS
REACHED THE TOP OF
MEMORY SPACE

IF NOT, CHECK THE DE

POINTER

LOAD H WITH 1

SEE IF DE POINTER
REACHED THE TOP OF
MEMORY SPACE

IF NOT. GET AUDIO INPUT

PUT 001 IN D

GET AUDIO INPUT FROM A/D

AND MOVE IT TO MEMORY
SWAP POINTERS HL & DE
GET DATA FROM MEMORY

AND QUTPUT IT TO D/A

SWAP POINTERS BACK
INCREMENT HL POINTER

INCREMENT DE POINTER

Thirty-one

TRACE PROGRAM continued PRUGRAM USED TO
DENMONSTRATE SAMPLE RUN

22001 NAM SHOWENM
00202 OPT NOG, M
00003 3000 ORG $3000
00034 *

00005 *SHOWEM - A SAMPLE PROGRAM
20006 *TO SHOW RUNNING FEATURES OF DEBUG
22007 *

20008 3099 CE 30QE XX LDX #TABLE
20009 3003 AS 00 zZzZ LDA A B,X
P0010 30205 27 FE BEQ *

Pod11 3207 BD 3@ec JSR YY

pegl2 3oeA 20 F7 BRA zZZ

20013 *

00014 300C 28 YY INX

28815 380D 35 RTS

2816 *

20017 300F 41 TABLE FCC /ABC/
00018 301] o0 FCB "]

20919 END

TOTAL ERRORS 080200
ENTER PASS X

SAMPLE RUN OF DEBUG PROGRAM

J 4000

DEBUG

@ T ADDR ? 3800 ADDR ? 3011

@D

D 3F 20 FI D@ 00 00 00 00 V0 00 30 00 30 1l 00 20 00 00

@

J ADDR 7?7 3@oC

28 20 F! DO 00 08 80 00 30 @C
39 20 Fl DO 00 00 00 ©1 3@ @OD 30 @2 32 11 00 02 0@ 00
J ADDR 7 3000

CE 300E 90 F! DO 00 00 00 @1 30 00
AS 00 20 F1 Do 02 20 30 OE 30 @3
27 FE 20 Fl D@ 00 41 30 BE 38 95
BED 326C @@ FI D@ 00 41 3@ QE 38 o4C
28 20 FI D@ 0@ 41 30 BE 30 ©C
39 20 Fl DO 0@ 41 30 OF 30 0A
20 F7 20 F1 D@ 02 41 30 OF 30 03
A6 20 B0 Fl D@ 00 41 30 OF 30 83
27 FE 20 FI DO 20 42 30 BF 30 05
BD 300C @0 FI DD 00 42 30 OF 30 @C
28 80 Fl D@ @0 42 30 OF 30 oC
39 P2 F1 DD B8 42 30 10 3@ @A
20 F17 20 FI DB 00 42 30 10 30 93
A 02 28 F1 DO 02 42 30 10 30 23
27 FE 20 FI DB 20 43 30 10 30 @5
BD 300C @0 Fl1 D@ 808 43 30 10 30 oC
28 00 F1 DO 20 43 30 10 30 oC

e R R e R R R e e e R RN e e E RO]

27 FE 90 F1 77 88 959 AA AA 302 ©5 30 90 30 11 BB BB CC CC
M

T 39 20 F1 D& @@ 43 30 11 30 @A
T 20 F7 99 Fl DB 20 43 32 11 30 03
T A6 00 @0 Fl D2 08 43 38 11 38 03
T27 FE 80 F1 D4 90 00 30 11 30 05
T27 FE 80 FI D4 00 22 30 11 30 @5
T27 FE 20 FI D4 22 00 30 11 30 @5
T27 FE 20 F1 D4 V0 20 30 11 3@ @5
T27 FE 00 Fl D4 20 00 30 11 30 @5
T27 FE 00 Fl D4

DEBUG

@c 77

@ B 88

@ A 95

@ X AAAA

@ I ADDR 7 BBBB

@ 0 ADDR 7?7 cCcC

@D

D

@

Thirty-two CN/November 1977

A Definition of Terms:

sub-scribe /, seb-'scrib/vb sub-scribed:;
sub-scrib-ing [ME subscriber]1: to sign

one’'s name to a document (as a cou-
pon; as the one below) 2: to enter
one’'s name for a publication (as CN-
Computer Notes; one year for $5.00/

$20.00 per year overseas) 3: to feel

favorably disposed syn ASSENT ant

boggle —sub-scrib-er n

computer —
r notes m[j@@ a subsidiary of Pertec Computer Corpaoration
2450 Alamo S .E.

Albuquerque, New Mexico 87106

Please send me a 1 year subscription to Computer Notes.
$5.00 per year in U.S. $20.00 per year overseas.

NAME:
ADDRESS: .. S
CITY: _STATE. ..., 2IP
COMPANY/ORGANIZATION ...

J Check Enclosed MC or BAC/Visa #

[J Master Charge ExpDate
L O BankAmericard/Visa Signature

~

