FOUNDATION DOCUMENT

A Technical Guide to the General pro-
gram structure and File Handling

Routines used by Peachtree Softwaretm.

Copyright 1978, 1979 RETAIL SCIENCES, INC.

Revision 2.1

/70

IL.

IIT.

Iv.

VI.

VII.

FOUNDATION DOCUMENT

TABLE OF CONTENTS

INtrodUCtioNe s ss s samccs a5 86 sesssssaeease assms s s ssessm
Hardware/Software RequirementS...c.ceeeeeceeccecaccens
Digk Pile ConventilolSsasavsnwsssssnommnasnmans nomeess
Program BASIC Subrouting Ma@pP...ceeceeceseecoccccccannes
Peachtree Software SkeletoOn.....eeeeeeerineeeeocaconns
MART S siws s o o s 016 oo si s noions s seionioiessasnsesssenises
MIKSAM, oo oasosvisosscocsssvnasss dasnmensssassedsswwsssse

Ls Introduction

This Foundation Document describes in detail the general
structure and file handling routines used within the Peachtree
Softwaret™ packages.

Although there are variations in programming techniques
from package to package, this document serves to inform the
user of the basic philosophies and mechanisms used specifi-
cally within the accounting, inventory packages, and other
Peachtree packages.

Particular attention is given to the two ISAM file man-
agers used within most Peachtree packages. The first of these
managers, MARIS (Multi ARay ISam) is a single key ISAM written
entirely in BASIC and appended to the end of each program. .
MARIS is used by each of the four accounting packages. The
second file manager is MIKSAM (Multi Index Keyed Sequential
Access Method). MIKSAM is incorporated within the Inventory,
Timekeeping, and Mailing Address packages. MIKSAM is a so-
phisticated multi-keyed ISAM supporting variable length records.
It is written in assembly code (for effeciency) and interfaced
to the BASIC packages through subroutine calls.

Necessary adjuncts to the Foundation Document are the
individually packaged system documentation which describe each
of the application packages. Each of these documents narrate
the particular programs which comprise the application system
along with the files used and reports produced by each program.

ITI. Hardware/Software Reguirements

Hardware Requirements Any 8080-type microcomputer
- 132 column printer

- CRT Terminal (24 lines, 80 characters
per line)

- 2 flexible disk units
- 48K bytes of RAM

Software Requirements

Microsofttm Disk BASIC language
- CP/Mtw Operating System, or equivalent

The packages of Peachtree Softwaretm are designed to be
virtually machine-independent; i.e., any proper hardware
configuration which will fully support Microsoft BASIC should
execute the Peachtree packages. Other than the programs which
use the USR function to interface with the MIKSAM file routines,
no device-dependent BASIC statements (PEEKS, POKES, IN, OUT,
ETC.) are incorporated within the Peachtree programs.

III. Disk File Conventions

Peachtree Software packages are delivered on a single
flexible diskette for sales, demo and customer training
purposes. However, for general system use, two flexible
drives and two diskettes are required. System programs
reside on drive /A while customer data resides on drive .
1/B. Instructions are provided with each package to convert
from a single-disk to a two-disk system.

There are two types of files on each package diskette-
program files and data files. All program and data files
are prefixed by a two-character code unique to each package;
e.g., GL for the General Ledger package, PR for the Payroll
package, and so on. All program files are suffixed by .BAS
and all data files are suffixed by .DAT. For example, the
Master File Maintenance program file in the General Ledger
package is named GLMF.BAS. The General Ledger Master File
itself is named GLMST.DAT. ’

The specific file names for each package are listed
within that packages particular package document.

Iv.

Program BASIC Subroutine Map

Statement Range

2

APPAP
S5g839
50999

519928
51200
51400
51699
51800
51998

52008

540920
54058
54109
54200
54308
54499

54509
54639
54789
630088

49999
50899
53999

519899
51399
51499
51799
51889
51999

53999

54449
54499
54199
54299
54399
54499

54599
54699
59999

65504

Range Contents

Program file name, title, author's
initial's, creation date, date last
modified.

CLEAR required string space, copyright
statement.

ON ERROR GOTO 54588 'ERROR TRAP SETUP
PN$ = "Program Name" 'PROGRAM NAME
ASSIGNMENT

GOSUB 579409 'GET SYSTEM PARAMETERS

FROM SYSTEM FILE

Package File Handler and Interface
Routines.

Get system info, date; verify diskette
assignments; define functions.

Print Heading to Screen.

Alphanumeric string input (Query String)
Numeric string input (Query Number)

Date string input (Query Date)

Dollar amount input (Query Dollar)

Yes - No input (Query Yes-No)

Top of page input (Query Page)

(Not currently allocated)

INVALID ENTRY message subroutine
System error test subroutine

SYSTEM ERROR message subroutine

NUMBER OUT OF RANGE message subroutine
INCORRECT DATE message subroutine

(Not currently allocated)

BASIC Error Trap subroutine

SYSTEM File Assignment message subroutines
(Not currently allocated)

MARIS or MIKSAM File Subroutines

SECTION V

PEACHTREE SOFTWARE

SKELETON

Open _and Read System Parameter File

The system parameter file is opened and read. Drive "A"
will be accessed first. If the file is not there, then the
variables will be erased and MD$ will point to the appropriate
drive.

0000 ON ERROR GUTD S01203 BELL$sCHRS (7 3+ CHRS (7)) +GHRS (7))

S00L0 OFEN "Iyl "AGLEYS.DAT" INFUT 41N

SO020 DIM VHVAL GNE) I IUS 0D =NEIFOR T=l TO VAl (NS STHFUTEL VS CTY INEXT TI0L0SE
BO0E0 MDE=UE 1L $H0: u¢<m>*umvatcvw<?>>

BO050 TF MDA AND MDSCEUEY THEN GOSUE 546503 GOTO 19900

50040 TF MDS="4Y GOTO 50110

BO070 DehliERGSE Vs

SO090 OFEN X%y Ly MRS+ TGLEYS . DAT Y STHPUT Ly N

SOO9E DIM VAL NS) TUE CO D =NS SFORT=1TOUAL (NS) TTNFUT Ly US DY SNEXT Ti0LOSE
EOLOD MDe=VH L) 0 TF MDeCs B THEN GOSUE 544008 GOTD 19900

CHOLL0 0N ERROR GOTO 545003 GOTO 50140

50120 TF ERR=53 OR ERR=5¢& THEN GOSUE 546008 GOTO 19900

H0130 IF ERR=S4 OR ERR=6Z OR ERR=6S5 THEN GOSUE S4450:60T0 19900
B0150 GOTO 54500

BELLS - (CRT terminal alarm)
SC$ - (CRT terminal clear screen and home cursor command)
MD$ - Any system drive designator e.g. (B,C,D...)
W - (CRT terminal/printer width)
V$() will be defined within each system's internal docu-
mentation.

DEFINED FUNCTIONS

Initialize variables to perform pack double precision number
into 4 byte string.

ERY o

G0LAT Nk ~~1'3‘"'J1 ’7”0 321‘9 25 ’3(8 + Il 1;’('/‘ “HNE(00 +0HRSE (0D TRE% = AARE DD +(Ch n}'\‘sr-,_g 16833
-,JlL} 01/0

Subroutine to convert double precision number (DD#) into 4
byte string (IIS).

H01A1 T l--ull D G DD D O ¢ 5y 4 3 RETURN

Subroutine to convert 4 byte string (II$) into double pre-
cision number (DD#).

. S01AHE DOk (O (S E+TIE+ ,“3 BTN Ol D, 01D M’""& UI\N

Defined function to convert 8 character date string
"MM/DD/YY" into single precision number in reverse order
YYMMDD and stripped of "/" is

" f.i. 1 w0 DEFFRSD (S =Vl (RIGHT® (8 v 20 rLEF T C Sk 2 rrtilhE (She s : })

Defined function to convert single precision number into
character string in the form of "MM/DD/YY".

005 DEFFHDSE D =MIDS CETRB DI 2 v Sy 204/ + TS (STREM o &3

)

e R CRTREAIN 2 E 0

0180
G01en
S0Les
G0Eoo
=210

SRR
S0510
S0e20

S0EE)

Open System File Subroutine

Open system file and read DATE (VD$), System Name (vs),
Company Name (VvC). SC$=(CLEAR SCREEN + HOME CURSOR COMMAND) .

OFEN "I“vﬁv"ﬁiGLDﬁ.DﬁT"iINPUT F3yVDHICLOSE 3 "DATE
MBE=UBE LYY VGB=UsR0) "EYSTEMy COMPANY MNAME
FOR =1 TO VAL (VE(ETY) D<Z(I)ﬂUﬁL(U$(23+2MI))2 MEXT
FRINT S0 360SUR GOGO0IFRINT I FRINT DIEPLAY HEADERS
FERINT UFRINT " ONE MOMENT FOR PROGRASM QTﬁﬁTupy..O"iPRINTIRETURN

Heading

)
H
-
3
(1.

W
VC$
Vs$
PNS
VD$

WIDTH
COMPANY NAME
SYSTEM NAME
PROGRAM NAME
DATE

PRINTT&&((HwLEN(UQ$))/H);UC%IPRINTT&E((HMLEN(MS$)3/2)$US$
PRINTT@E((HwLKM(PN$))/2)$PN$
PPINTT&E((HWLEN(UD%))/23?UD$

FETLIF

Alphanumeric String Input (QUERY)

Q$ - The query prompting message or null ("") if no such
message is to be given.

R$ - The user's response is first compared with "END" to
test for program exit.

RL$ - The leftmost character of the user's response (RS).

This subroutine is used to query the user and obtain a
response. The programmer provides the prompt in Q$, and RS
is returned with the user's response. Only Control C will
thwart this subroutine.

CRINT Q85 JLUINE TNPUT R
LBl TS (R e) |
RS CENDY THEN GOTO 19900 B & RETURN

Numeric String Input (QUERY NUMBER)

Q$ - The prompting message or null ("") if no such message
is to be given.

UB! - The upper bound allowed for N!
LB! - The lower bound allowed for N!

N! - The value returned by this subroutine in the range
LB !<=N!{<=UB! -

This subroutine uses the Alphanumeric string input subroutine
to prompt the user for a number. The input string RS is
checked to insure of a valid number. If R$ is null then

N!{ = #. R$ is scanned for allowable blanks followed by an
optional "+" or "-" followed by 1 or more digits in which
there may be an optional ".". If RS$ can be converted to

a valid number, it's value is checked to see if it is in the
range of LB! and UB!. If it is not in range, an "OUT OF RANGE"

message is printed and a new number is requested. IF UB! = LB!
then this range checking is omitted. No error conditions may
arise.

1 $ f":wlll! RETURNELSEDFE=0 3 06=0
o I l""ih D fHI':Nhr AL (R 20 DEOTONLZE0
.‘I $oa r“ J“{U‘}ix':/o

ulx UU

Pl v[:‘}d ({ ‘;() :ll f IJ i
GOSUESAL0 0 2G0T 08

Date String Input (QUERY DATE)

MO - The Resulting Month
DA - The Resulting Day
YR - The Resulting Year

This subroutine uses the Alphanumeric String Input Subroutine
to prompt the user for a date. The string RS$ returned from
query is parsed to see if is a correct date, i.e., R$ is null
in which case MO=DA=YR=0 or RS is in the form MM/DD/YY where
1<=MM<=12 and 1<=DD<=31 and 50L=Y¥<=99. The slashes between
MM, DD, and YY can be any symbol. RS$ contains the string
value from which MO, DA, and YR are derived.

BLO00Y TR OLENCRS =0 THEN M Dl YR=01 RETURN
ynd TR LEN O 2 8 GOT0 i‘.’.'- A
e SN IF MO==0 GOTO S l s ;ﬁ FELESE ITF MO=2 THEN RéE="0"+RE

A THETR OGS s R * 7" Y DT D0 GO (. 51450

TF Dol THEN RLGE=LEFTS RE» 331 R l‘m‘ O HRTGHTE (RS » 43 SRE=RLE+RE

SLAS0 MO=Val CLEFTS (R » 20 3 108V aL (MIDE RSy 4y 23) SV RmUGL CRTGHTSE (RE 20)
G140 TF M0G0 @ND CMO0-=T1 3 SN0 (DA 0 0 aND CDACZ2) AND CYRE 0 Y ARD ORI) THENRE TURN

..JJ. 450 GOSUBS4A300IG0TOS1400

;-‘1 /l"‘)_[

Q

51400

140

SLESE
51&&0
&7 0
l1c;<)
51620
1700
S0

18500
SLENS
Hi807
=810
HLE00
SN0

HisvEn L

Dollar Amount Input (QUERY DOLLAR)

D# - The dollar value returned

This subroutine uses the Alphanumeric String Input Subroutine
to prompt the user for a value. The string RS returned from
query is parsed to see if it is a correct dollar value, i.e.,
R$ is null in which case D#=0 or R$ is a valid number (See
QUERY NUMBER for number definition) or is a number preceeded
by a "$". Any commas are ignored. No error conditions can
arise. R$ contains the string value from which D# is derived.

GDSUEswuuuzwrmn*DGxu

TFLEFTS RS 1 m® WTHEMNRE=MTDS (RE 2) tG0TOS 1620 _

JJETNETR (R y “):IFJJ{}UTHENR$wHID$(R$y1»ddw1)+MID$(R$vdd+1}:
GOTOS1 440) e

TELEFTE RSy L 4 THENR S =TS (R e 2

TFLERN R 30 THEND =0 3 RETURN

FORJJ=LTOLEN (RS $OH=ASCOMIDS (Re s JJy 13

TFCHE47 ANDCHSETHENDG =1 1 GO TOS 1700

TFCH=4 S THENDF=DE--1 L IFDE: L THENGOSUBSA0 00 1 GOTOS1600ELSEGOTOS17 00

TF COM45) AN COM-43 3y DRJUS: L THEMGOSUES 400 0 200TOS 14600

NEXT o & TR DG 0 T HE NG 5UF540003@0T051&00

Bk, CR%-+ "D 3 RET

Uh nr;" (Y ﬂﬁ U)? "

i VR Sl FRETTLIRN
; llH(,L)—U [HiN h YURN
thlq RYTHEHGOSELESA 00 0 FEOTOSNLE0E FETUIRN
S N lITVT“PU TUVTON THE PébEl am T OO & PaGE. "
et READY " SGOSUE S18003 TF LEMGREI =0 THEN RETURN

IFNOT YE 5 GOTO SH1910 FLEE RETURN

.....

The parameters Q$, Q, and QT are described in the query
subroutine. Yes - set true (-1) if answer is yes, set false
(0) if answer is no.

This subroutine uses the Alpha Numeric String Input Subroutine
to prompt the user for "yes" or no". Only the leftmost char-

acter (RL$) is checked for a "Y" or "N". If neither of these

occur, the question is reasked.

Basic Error Trap Location

SAE00 PRYNT S FRINTY EasTO ERROR NMUMEBER "SERRS ™ LINE NO. " $FERL
SAHL0 PRI CONEULT BaASTO MaMUAL FOR EXFLANATION, ®
SAGZ0 PRINT SFPRINT " aiRN0RMSL END OF JOB " SFRINT
SAG30 FORIT=1LTO400 S FRINTEELLS : INEXT IRESUME 19%00

Top-of-forms Subroutine

This subroutine will print from the current line (LC) to 65
and then. set LC to 4.

ﬁﬂﬂﬁ?vFﬂﬁullﬂLC T &5 LFRINTi NEXT TI8 LC*U& RETURMN

Invalid Entry Subroutine

BELLS-CRT terminal audible alarm command

S4000 FRINT 000 TNUVALTD ENTRY., FLEASE REENTER. %0 §EELLS 3RETURN

System Error Test

CEAUH0 TFEREsDTHERMPGL TLIRN

System Error Subroutine

G100 PRINTT
GOTO 1E

wa BTETEM ERROR "FERXE" . PLEASE COMSULT MabUAL . ®okt 3 EELL 4

o

b,
PR AR

Number Out of Rahnge Subroutine

SAZ00 PRIMT "o WUMEBER TS QUT UF ROANGE . %m%“iﬁﬁLL$ZRETURN

Incorrect Date Subroutine

GAG00 PRINT ook TNCORRECT DATE. HUST BE FORM MH/DD/%‘. AR G ERELLE CRETLIRN

10

System File Not Found
_54&00 FIRINT G FRINT Ao PROPER SYSTEM FILE NOT FOUND.

Canct T CONTINUE, soek® IRETURN — - S

System File InitializedAImproperlx

AED-PHINTiPRINT wanok SYSTEM FTLE INITIALIZED THPROFERLY .

CAa' T CONTINUE, s JRETURN

LIST VARIABLES FOR THE PEACHTREE SOFTWARE SKELETON

BELLS

CH

ot
ik
oA
iRk 2
nG
OKZ%Z<

op

IIs
JJ

LE!
MO$

MO

N#

N$

FNE
as

-34000,

-51240,

-30175
-51655,
-31400,
-350161,
-51200,
-30193

-51200,

-50030,
-51400,
-51200,
-50160,

-50010,

-50910
-31000,
-31000,

"'51420;
-514660,

54100,

91260,

21800,

31060,
91422,

91710,

24200,

91260,

51280,

31600,

91280,

20060,

51430,

S0165

200920,

91210

51065,
51424,
51807,

94300,

51270,

91430,

.51600,

91680

916440,

30090,

21440

51200,
291426,
51910

12

51660,

21440

91670,

51660,

50100

51220,

31430,

91670,

51700

21690,

51230,
391620,

516890,

31700

91240,
315640,

951690 .

951290,
216350,

31400

916535

LIST VARIABLES FOR THE PEACHTREE SOFTWARE SKELETON

RL$ - =51060, 51426, 51805, 51810
S$ -50170

SC$ -50030, 50200

UR! 551290

U$ ~50070

Vs ~-50020, 50030, 50095, 50100, 50190, 50195
yC$ -50190, 50900

VIs -50180, 50920

VS$ ~50190, 50900

W —-30030, 50900, 50910, 50920
X8% -501460, 50145

X9 ~50160, 50165

YES -51805, 51920

YR - -31400, 51430, 51440

13

SECTION VI

MARTIS

MARTIS
Multi ARray ISam

Steve Mann
.(Revised 1/24/79)

MARIS OVERVIEW

MARIS is a Multiple ARray Indexed Sequential method used
to map Key values to record addresses in a file. 1In the dia-
gram below, OI is the index which MARIS uses to point to the
Key in array OK$. The Key is found using a binary search.
Appended as the last two bytes of each Key is OS, which contains
a pointer to the Master Sector. The Key is KL% bytes long,
where KL% is defined by the programmer. Any element of the
array OK$ is therefore KL% + 2 bytes long. The master sector
can be linked to none, one, or more extent sectors, and together,
they make up a data record.

OK$ —

Master
0I —> KEY$. 0s = WP S

T {

Extent k.Data
Sector Record

___v.______ly...___v_d
KL% bytes 2 bytes . \L

Extent
Sector

14

To explain MARIS more effectively,

the following example

problem will serve as a guide for illustrating the interaction

between a program and its file structure using MARIS.

Assume the tasks laid out before the programmer include
maintaining a Membership Roster for the neighborhood Country
Club. This roster must contain the names and address of each

family belonging to the club.
who belongs to the Club must be kept on file.

Furthermore,

arrange the file would be to allow the family last name to

serve as a key for referencing:

each family member
One way to

(1) the family street address,

and (2) each family member's full name along with their "prefer-

red" name.

A schematic representation of the file for the two records
or families Jones and Smith might be:

5 3 i Rsvd
4 [Jones > 2 | Jones 1870 Ridgewood Atlanta, GA | 30329|Maris
~—
£ Rsvd
i | .Jones Hamilton Wesley Wes Maris
2 Rsvd
é Jones Lucille Marie Lucy | Maris
. g ‘ . Rsvd
o Z | smith 4210 Briar Dr. Atlanta, GA | 40243|Maris
h'4 —
e Rsvd
® | .Smith Thomas Randolph Tom | Maris

15

KEY

KEY

Notice that Jones and Smith can be used to find their
respective families (they are keys). The Jones key points to
the first record by specifically pointing to the sector which
contains a duplicate of the key (Jones) and an address. MARIS
refers to this first sector of the set as the Master Sector or
simply as the Master. 1In this sector, a duplicate of the key
was inserted by MARIS, while the programmer inserted the address
information. The two sectors which extend downward from the
Master Sector, are the sectors which hold each family member's
name in the form of last name, first name, middle name, and
preferred name. In MARIS, these sectors are referred to as
Extent sectors. The collection of one Master Sector and (none,
one, or more) Extent Sectors comprise a record. The last field
RSVD
MARIS
five bytes of every sector are reserved for use by MARIS.

associated with each sector, labeled show how the last

Add Family

The following is a schematic representation of adding a
new Family to the Roster; and then deleting one. There is just
one member in the newly joined Lawson Family. So a Master and
one Extent are created for this record.

The file before addition:

? Rsvd
[Jones =€ | Jones 1870 Ridgewood Atlanta, GA | 30329|Maris
—~i ;
5 , " |Rsvd
7y | Jones Hamilton Wesley Wes |[Maris
g Rsvd
ﬁ Jones Lucille ; Marie | Lucy | Maris
g) Rsvd
Z | Smith 4210 Briar Dr. Atlanta, GA | 40243|Maris
;- Rsvd
%5 |LSmith Thomas Randolph Tom | Maris

16

The file after addition:

Yy
B

[Jones > = | Jones
L]
>
3 Jones
e
%< | Jones
53]

[Lawson l
49
n

2 | smith
‘—{
) :
2 Smith
0

€>§ Lawson

i
S L
o awson

Note how the keys are kept sorted in ascending order and point
to the corresponding Master sector.

17

The file after deletion

of the Smith Family.

gl

Masl

A R R D R
e IR IS DB
YA/ /SISy

&xrz oyl AT

18

The shaded area which oncecontained the Smith family's
record is now placed on an available list for later use by
MARIS when new file space is needed.

The following is a detailed look into the characteristics
of a Master sector:

KEY SECTOR DATA oM$ OE OL

KL% bytes 123-KL% bytes 1 byte 2 bytes 2bytes

MARIS will LSET the key value into a file buffer having
a size of KL% (key length). The sector data must be LSET by
the programmer into a file buffer having a maximum size of
123-KL% bytes. The space difference between 128 bytes (the
size of a sector) and 123, is the 5 bytes MARIS reserves for
storing OM$, OE and OL. OM$ will contain "M" for Master
sector, or "E" for Extent sector, or "F" to indicate the sector
is "free" for re-use. OE and OL contain sector pointers. OE
points to the sector location of the "next Earlier" ordered
sector in the record, while OL points to the sector location
of the "next Later" ordered sector in the record. In most
operations, MARIS will return the value (0S), which is the
current sector location.

Sector

¥ S 03
Iz) 1
13 { 1z

Through the use of these pointers, a programmer can always
determine the locations of the current sector (0s), and of its
adjacent sectors (OE), (OL). Notice how MARIS cloges a loop by
having the MASTER (which has no Earlier sector) point to the
last extent. By the same logic the last Extent (which has no
later sector) points to the MASTER. When a record is first
created, there are no Earlier or Later sectors to which the
MASTER'S (OE) and (OL) can point. So, they point to (0S),
the sector number in which they reside. (0S) = (OE) = (OL)

oME OE OL

M i il

 Sector
/") | M

This also becomes true when all Extent sectors become deleted.

The Extent structure differs from the Master only in the
fact that MARIS does not store a duplicate of the key value
within the sector. However, it is advisable to maintain the
key in each Extent {as shown in the examples), for recovery in
the event that file integrity is lost.

An extent can be deletedfrom any record by specifying
(0S), (the sector number of the extent to be deleted) and
performing a DELETE ENTENT SECTOR function. MARIS will alter
the adjacent sectors to point to each other: OE (pointer to
next "earlier" sector) is set to the sector proceeding the
deleted extent and OL)pointer to next later sector) is set to
the sector following the deleted sector.

DELETE EXTENT

After first accessing the Master, its adjacent "Latest"
record, (OL), becomes known. Setting OS to OL and performing
a DELETE EXTENT SECTOR results in:

T { m|
T T A TE PP 2
i

M 13 /3
F

43 \ | & | Ty

Extent 1 is deleted, and the two adjacent records now point to
each other, Extent 2's (OE) now points to the Master and the
Master's (OL) points to Extent 2.

To add a new Extent, pointers OE and OL must be set to the
value the sector should have after creation.

ADD EXTENT 3

OE must be set to point to the new extent's predecessor,
(OL) must be set to new extent's successor. To add Extent 3,
(OE) must point to Extent 2, and (OL) will point to the Master.
After first accessing the MASTER, the last Extent sector
(pointed to by OE) be¢comes known. Setting OL to OS and leaving
OE alone will arrange the pointers for the new extent (the new
sector's OE field points to the old last extent and the OL
field points to the master). Performing ADD EXTENT SECTOR will
cause MARIS to calculate a new 0S, and later the pointers of its
adjacent records. The Extent is not actually saved until the
programmer LSETS the appropriate fields and the statement "PUT
FI%, 0OS" is performed.

Sector omt 9 or
) 8 M 14 13
1z VELH LA T AL Bl = S
)3 } E H 4

£ 13 i

Note that deletion of sector followed by creation of a
sector without changing pointers results in an unchanged
structure. Similarly, creation followed by deletion leaves the

structure unchanged.

Should the last extent be deleted, the error code will be
set to 1, implying that the end of the extent list has been

SR A A G N L A e i AT A A

II. -~ "MARES"

Operations

The following operation codes and their corresponding file
procedures are described in order of operation number:

op
1

*

FUNCTION PERFORMED

CREATE MARIS FILE (FI%, NAS$, DI%, DAS$, KL%, OCS,
RETURNS: ER¥%)

OPEN
KL%,

The operation performed is to create a MARIS file
with name NAS, on drive DI%, with creation date

DAS, with key length KL%, and comment OCS$. FI%

is used as a temporary file number. ER% is set

to 4 if the file already exists otherwise ER%

is set to 0. The file is not opened after creation.

MARIS FILE (FI%, NAS, DI%, RETURNS: DAS$, EX%, NR%,
OC$, OI, ERY%)

The file NAS on drive DI% is opened as file number
FI%¥. The variables DAS, EX%, NR%, OA, KL%, and

OCS$ are set to the creation date, the current extent
of the file, the current number of records in the
file, the key length, and the comment information
respectively.

ER% is set to 5 if the file does not exist, to 1
if the file is empty, or to 0 if no error holds.
If ER% = 0, a side effect of opening the file is
that the file is rewound and OI is set to 4.
(The first index in the file.)

The key values and pointers are read from the file
into an internal array for fast access. If the
file had not been properly closed then this array
was not saved in the file; the open function
rebuilds the array by scanning the entire file and
by sorting the keys. Hence, if the file was not
properly closed, a longer time must pass before
opening can be accomplished. If the file had not
been closed properly, then the CLOSED flag will be
set to 0, otherwise it will be set to 255. The
CLOSED flag is in byte 6 of header record.

22

3 CLOSE MARIS FILE (RETURNS: ER%)

The MARIS file currently opened is closed and

the key pointer array is written out at the end

of the file. ER% is set to 6 if there is not enough
room on the disk to hold these pointers. (Subsequent
re-opening of the file will work properly although

a longer time must pass. See Section V). ER% is
set to 0 if the file is closed properly.

4 CREATE A MASTER RECORD (KE$, RETURNS: OI, OS, ER%)

The key/pointer array is searched for the key KES.
If found ER% is set to 3 and no action is performed;
if the key is not found, one is created. OI is set
to the key/pointer array index, OS is set to the
master sector created, the buffer is set to receive
information, and ER% is set 0. If ER% is set to

6 then the disk is out of room.

5 DELETE RECORD (KE$, RETURNS: KE$,0I, OS, ER%)

The key/pointer array is searched for the key KES.
If not found then ER% is set to 2 and no action is
performed. If the key is found, the key is deleted
from the array and the master and any extent sectors
are placed on the available list for future use.

If the end of the file is not reached, KES$ is set to °
the next key in the file, OI is set to the next array
index, and OS is set to the sector of the next master
record. ER% is set to 0 if no error occurs.

6 REWIND (RETURNS: OI, ER%)

The file is rewound so that the master sector of the
first logical record in the file is the next record

to be read. 1If the file is empty, ER% is set to 1,

otherwise ER% is set to #. OI is set to 4.

7 SEARCH (KE$, RETURNS: OI, OS, ER%)

The key/pointer array is searched for the key KES.
If found then ER% is set to 3, OI is set to the
array index, and OS is set to the sector containing
the master sector of the corresponding record. If
the key KES is not found then ER% is set to 2.

8 GET RECORD (KE$, RETURNS: 0I, 0OS, OE, OL, ER%)

The file is searched for a record with key KES$. If
not found then ER% is set to 2 and no record is ob-
tained. If ER% is zero then the record was found;

OI is set to the array index, OS is set to the sector
of the master area, OE is set to link to the end

10

11

12

13

FUNCTION PERFORMED (Cont.)

GET

extent; 0L i8 st te link to the first extent, and
the buffer holds the master sector of the record.

NEXT RECORD (RETURNS: KE$, OI, OS, OE, OL, ERX%)

The next logical record in the file is obtained.

If ER% = 0, then KES$ holds the key of the next
record, OI holds the array index, OS holds the sector
number of the master sector, OE is the link to the
end extent, OL is the link to the first extent, and
the buffer holds the master sector. If ER% = 1,

then the end of the file was reached.

GET PREVIOUS RECORD (RETURNS: KE$, OI, OS, OE, OL, ER%)

The record preceding the current logical record in
the file is obtained. If ER% = 1 then there is no
preceding record (i.e., the front of the file was
reached). If ER% = 0 then KE$ holds the key of the
previous record, OI holds the .array index, OS holds
the sector number of the master sector, OE is the
link to the first extent, and the buffer holds the
master sector of the previous record.

CREATE EXTENT SECTOR (OE, OL, RETURNS: 0OS, ER%)

If ER%Y = 0, a new extent record is created. OS

is changed to point to the new extent sector.

The earlier extent field in the new extent is set to
OE, the later extent field in the new extent is set

to OL, and the buffer is set to rececive information.

ER% is set to 6 if no room is available on the disk.

DELETE EXTENT SECTOR (OS RETURNS: OE, OL, ER%)

If ER%¥ =@ , then an existing extent sector OS

is deleted. The result of this operation is that OE
is set to the earlier extent before the deleted
extent OL is set to the later extent after the
deleted extent and the deleted sector is placed on
the available list for future use. IF ER% =1, then
the end of the extent has been reached.

GET NEXTENT SECTOR (0OS, RETRUNS: OE, OL, ER%)

If ER% = 0), then the sector 0OS is obtained. OE
is set to the earlier extent, OL is set to the later
extent, and the buffer is set to hold the next
extent sector. If ER% = 1, then the end of extents

has been reached.

24

FUNCTION PERFORMED (Cont.)

PUT MASTER OR EXTENT RECORD (OS):

There is no OP subroutine to write the record
contents of a sector; rather the programmer should
use the following BASIC statement:

PUT FI%, OS
Where FI% is the file number and OS contains the
sector number, usually determined by MARIS.

25

IIT. Variables and Their Use

Name USE

DAS File creation date

DI% Disk drive file is mounted on

ER% Error indication

EX% Extent of file

FI% File number

KES Key value

KL% Key length

NAS Name of file

NR% Number of records in the file ,

0¢$-078 Header field descriptions for "MARIS", CLOSED FLAG,
DAS, EX%, NR%, OA KL%, and OCS$ respectively.

OA Available sector

OB Temporary - indicates bottom of search list

oCsS User comment

oD Drive file is mounted on

OE Link to earlier extent

OE$ Field for earlier extent pointer.

oI Index in key array - indicates current position

oJ Temporary

0K Temporary

OKS$ Field for key value

OKS$ () Key array index and pointer values

oL Link. value to later extent

OLS$ Field for later extent pointer

OM$ Field to indicate sector type: M= Master, E = Extent,

F = Free.

OP Operation to be performed in MARIS system

0S Sector Value

oT Temporary

OTS Temporary

Iv. Error Numbers and OP Codes

The following error numbers are also condition numbers,

usually ER% = 1 is not an.error.
ER% Meaning OP Codes of routines where
error _can occur
0 No error All routines
1 End of file 2, 6,9, 18, 5
1 End of extent v 12,13
2 Key not found 5,7,8
3 Key found 4,7
4 File already exists h
5 File does not exist 2
6 out of space 3,4,11
7 Invalid OP code
oP MARIS Function Performed
1 CREATE MARIS FILE (FI%, NAS, DI%, DAS$, KL%, ocs,
'RETURNS: ERY%)
2 OPEN MARIS FILE (FI%, NAS, DI%, RETURNS: DAS$, EX%,
NR%, KL%, OCS$, OI, ER%)
3 CLOSE MARIS FILE (RETURNS: ER%)
4 CREATE RECORD (KE$, RETURNS: OI, OS, ER%)
5 DELETE RECORD (KE$, RETURNS: KE$, OI, 0OS, ER%)
6 REWIND (RETURNS: OI, ER%)
7 SEARCH (KE$, RETURNS: OI, OS, ER%)
8 GET RECORD (KE$, RETURNS: OI, OS. OE, OL, ER%)
9 GET NEXT RECORD (RETURNS: KE$, OI, 0OS, OE, OL, ER%)
10 GET PREVIOUS RECORD (RETURNS: KE$, OI, 0S, OE, OL, ER%)
11 CREATE EXTENT SECTOR (OE, OL, RETURNS: OS, ER%)
12 DELETE EXTENT SECTOR (0S, RETURNS: OE, OL, ER%)
13 GET EXTENT SECTOR (0S, RETRUNS: OE, OL, ER%)
GOSUB 62000 SETUP (NR%)

27

V. General Comments

Should out-of space occur, no data is lost except the
last record entered or the key/pointer array. Deletions from
the file will work properly and new additons can be added up
to the number of sectors deleted. If out-of-space occurs while
closing the file and writing out the array, the file cannot be
closed properly even though deletions may have been performed.
This is because the array is saved at the physical end of the
file and logical deletions do not allocate physical space. The
file should be backed up (End-of-Period should be run) and the
resulting new file will be packed (i.e., all unused space
will be deallocated). A file closed improperly can be opened
although this will require time to rebuild the key/pointer
array.

Traversing a record (obtaining the master and all extent
sectors) may be accomplished in the following fashion:
100 GET RECORD (KE$, RETURNS: OI, 0OS, OE, OL, ER%)

110 IF ER% # § THEN GO TO 999 'record was not found
'operate on master sector

200 OS = OL: GET EXTENT SECTOR (OS, RETURNS: OE, OL, ER%)

210 IF ER% # O THEN GO TO 999 ' No link sector found
'operate on master sector
300 GO TO 200 ‘

999 'record was traversed
Traversing a file (obtaining the first and all succeeding

records in a file) is accomplished by:
100 REWIND (RETURNS: OI, ER%)

110 GET NEXT RECORD (RETRUNS: KE$, 0OI, 0OS, OE, OL, ER%)

120 IF ER # @ THEN GO TO 999 'end of file reached
'operate on record

200 GO TO 110

999 'file was traversed

Putting information in a sector requires first obtaining
or creating the sector, LSETing information into the sector, and
saving the sector.

To create information in a NEW master sector:

100 CREATE RECORD (KES$, RETURNS: OT, 0s, OE, OL, ER%)
'LSET information into the buffer if ER% = 0

200 PUT FI%, OS'save the sector out

To update information in an EXISTING extent:
100 GET RECORD (KES$, RETURNS: OI, OS, OE, OL, ER%)
'LSET information inte the buffer if ER% = 0

200 PUT PI%, OS 'save tbe sector out

All programs that use the MARIS file system must allocate

enough string space to handle program needs and key/pointer
array space. If the key length is KL% and the maximum number

of records in the file is NR%, then there must be at least

(KL% + 5) * NR% + C

bytes allocated for string space. C is a constant dictated

by the program needs; usually 1000 to 3000 bytes is enough.

For example, if there are at most 300 records with key length of

6 bytes, then (6+5) * 300 = 3300 bytes are needed for the key/

pointer array. A CLEAR 5000 should suffice for program needs.

COMPARISONS BETWEEN MARIS AND ISAM

The MARIS file system is a replacement for the existing
ISAM file system whenever the file structure to be implemented
consists of a set of records with each record being comprised
of a master area and a variable number of extent areas. Thus
the General Ledger, Accounts Receivable, Accounts Payable, and
Payroll Systems can be implemented with a MARIS file system.
For example, the General Ledger in ISAM consists of two indexed
files, the MASTER file and the JOURNAL ENTRIES file. In MARIS
these two files become one file, the master area holds the
MASTER account record and the extent area holds the JOURNAL
ENTRIES records.

Unlike ISAM, all MARIS calls are GOSUB 60000 with an
operation code, OP, set to a value between 1 and 13 depending
on what operation is to be performed. The only exception to
this is the SETUP MARIS call. This is .one by setting NR% to
the maximum number of records and by performing a GOSUB 62000.
This sets up the key/pointer array space.

LIST OF

OE
OES
OH

OH(

oI
0J
OK
OK$

OK$(

oL

OoLs

oMs$

ar

0s

oT

0Ts

aT%$(

VARIABLES FOR MARIS

-460800,

-602350,

-60283,

-60281,

—60260)
-60520,

-60260,

-60240,

-60250,

-60270,
-60520,

—60510:

-60250,
-52200

-60250,

-460000,

-460420,
-61200,

—60260:
-60710,

"'60250:
-60720

-60260,

609200,
60420,

60284,

60282,

60270,
-50600)

60270,

60283,

60280,

60280,
60710,

60800,

60420,

60280,

60280,

60500,
61300,

60281,
60720

60260,

60270,

461000,

60800,

60283

60283,
50710,

60283,

602835,

60420,

60283,
60730,

60900,

60800,

50420,

60510,
62100,

60270,

60310

61100,

k4

60900,

60284,
60720,

60200,

50284,
50700,

61000,

60900,

61100,

603520,
62200

60283,

60283,

31

61210,

61000,

60283,
60730,

60310,

60310

51000

60283,
51000,

61100,

61000,

61200,

60730,

60308,

60284,

61300,

61100,

60310,
60900,

60320,

60310,
62000

61210,

61100,

61300,

50800,

60310,

60320,
61000

60410,

60410,

61300,

61210,

60900,

603500,

60310,

61300,

60420,

60420,

61300,

61000,

60310,

60320,

62200

60500

62100

61100

60700

60710

LIST Or

BES$

0A%

niz

ERZ

EXZ

FI%

KE$

KLZ

NA$

NRZ

00%

01i¢

03¢

Q4%

06%

07%

08%

cA

OR

0C¢

on

-60280

-60140,
-60100,
-60090,
-60304,
-40800,
‘60250;
-60130,

-60310,
-61210,

-60420,

-460140,

-60100,

-60250,
-60410,

~462000

-60130,
-50130,
-460130,
-60130,
-60130,
-60130,
-60130,
-60130,
-460130,
-460250,
-60260,
-60140,

-60290

VARIABLES FOR

60200,
60110,
60330,
60700,
60260,
60150,

60320,
61300,

60130,

60260,
50420,

60140,
60140,
60140,
60140,
60140,
60140,
60140,
60140,
60140

60330,

60310,

MARIS

60120,
60400,
61000,
60280,
60230,

60330,
62100,

60700,

60260,

60200,

60280,
60500,

60230,
60230,
60230,
60230,
60230,
60230,
60230,

60230,

62100,
60410,

60330

601350,
60420,
61100,
60310,
60240,

60420,
62110,

60720,

60308,

50281,
50520,

62110,

60420,

60210,
60500,
61200,
60330,
60250,

60800,
62200

60900,

60282,
60500,

60290,

60330,

60330

60330,

50330

60700,

60220,
60520,
61210,

62100,

60260,
60900,

61000

60700,

60283,
60700,

60330

62110

62110

60710,

60240,
60600,
61300,
62110

60280,
61000,

60710

60308,
50900,

60720

60300,

60710,
62110

60290,
61100,

603190,
62000

60302
60730

60300
61200

60330

Fy@ 10430778
MULTI ARRAY ISAM -, MARIS (OF)

000 ONE] RRORGOTO40050 8 ONUI“ GOS UE 40100 :-60"’00 HSO"BOO n‘;O’%UO »&0500 yé:-(](SOO 60700
&0800,60900461000261100561200561300
010 ONERRORGOTOS4500IRETURN
070 TFERR=&1ITHENERX=6IRESUMESOD 1 0ELSEONERRORGOTOSAS500 I RESUMES4500
39e !
CREATE MARIS FILE (FIX» NA%s DIX» DA%y KILZy OCHy RETURNST ERZD

100 ONERRORGOTOSH0LL0 (NAS=CHRE(DIN+E5) -+ ¢ " +NAS I NAMENAEASNAS
110 ERZ=FRRIRESUMES01220
120 ONERRORGOTOHO0Y0 ¢ TFERA=58THENERZ =4 {RETURN
130 OFEN"R" FIX s NAGINAE=MIDS (HAE,3) ¢
FIELDFIZ yS4500%y 1AS01L4» 845025 ZASUSS » 2A504% y ZAE0NSS» 26306 Ey L00AS07 4% » 54508 %
140 LSET 00‘.1 =UMARIS* SLSETOLG=CHRS (255 JLSETOZ2E=DAG s LSETO2E=MKIH (1) ¢
LSETO4=MH{IE (0 PLSETOSS =044 L.SETOLS=MHKIS (KL S LLSETO7$=0C% ¢ LSETOE84="1030/8"
50 F'UTFI% y LICLOSEFTZIERYZ=0 {RETLURN

199
OFEN MARIS FILE (FIZy MA$s DI%s
RETURNS: DASs EX¥» NRYZ, Odr KL%y OGSy 0Ly ERZ)
70 OMERRORGOTO&0210 : NAS=CHRS (DTL+ES)+% 3 " +HAS NAMENASASNAS -

u ERV=ERRIRESUMESDZZ

e) ONERRORGOTOHB0 0 TFERZSEDTHENER =5 I RETURN

230 OFEN"R"y l’"'I"" g MAE I NAE=MIDS (NG 3) §
FITELDF Ty 5A500% s 1AE0LE » 8aS02% s ZAGSNEE » 2A509% » ZAS0O5% y 20504% » L0 0ASH7 S

2490 GETFIXNy 1 LFD0%-"MAaRITS "TI FERNCLOGERTY CERMY =8I RETURN

2500 DaE=02¢ EXM=CVUL (O3) I NRZE=CVT 049 s 0a=00T (053) SR ""‘C’J'I'(ﬁn’li') SO0 E=07%3
l‘-“ii(il%:!...l?)r“TY y CHLLZDY AS0KS y € 1 AO-HLLEYASOTSE » LASOME e ZASOES y ZAS0LES
TFOLECHRECEZSEY THENGIZSOELSETFNRZ=0THENS 0220

a&H0 Qb= %2 8 O Ta=1l, 4.’.2. SOR-1 2 0U=0T+ L IGETFIV s EXZIDITMOTE COT) e0E=0 2
FORDT=0TOOT I FIELDF Iy (OEYAS0TE» COMOASOTS QL) 1 OR=0R+OMINEXT ¢
FOROT=1TONRZ : IFOJ=0OTTHERNGJ=0 ¢ GETFIX

270 OHECOI=0TE(0J 1 0J=0U0+1L INEXTOLIERASEQTEIGDTOLHOZZ0

230 PRINTIFRINT "wouw FILE WS NOT CLOSED FROPERLY . ONE MOMENT FOR FIX.oo"$
FRINTEES ENRZ=0 G Tf T2 LI XFEXMZTHENGOZY QEL SEFORDP=2TOEXZ CGETFI S
TFOME="M" T u“NNR G FGAE L S ORE CNIRGD) =0 E+ MK TE (OF)

281 REXTOFR (TFNRZCZ2THENGIZ20ELSEDTHMOMH Y I0H L Y=L 1 0H (2 =43 (lH(S) MBRECH

282 JTFOHAOT+2) - Nl\ CTHENOT=0T+L 1 0H0T+2) =30 0T+ 1)+1 1 GOTO6 0723

283 FOROH=0TTOLSTER-1 § OH=0M (O :FOROQJ=0H+ L TONRY 3 0L=0J--0M : SHS .l“ DT OHE (O

284 TFOTE-0RE COXD THENSWAF QRS COT-0RD » QS (O 1 0T=0T-0HE TFOT -0 THENADZE4

285 SWARFDKE(O0T+0H) s 0TS INEXTOJ » O T ERASEOH

90 GETFIXZ LILSETOLS=CHRS (0 ¢FPUTFIXy L10OD=DIXGOTOL0400

50300
50302
50304
0308
50310

50320
50330
56399
50400
20410
0420

0499

20510

10
w2

556

3600

(EFS

;0700
0710
0720

0730

0759

0800

(B9

B9

CLOSE MARIS FILE (RETURNSS ERX)

ONERRORGOTOSH0B02 tGETFIX y L LERZ =431 G0TO460304
ERYX=0IRESUME&0304
ONERRORGOTOL0 090 L TFERZ=0 THIENRETURN
IFNRZ=0THENG 03B 0ELSEOQOK=KILLZ+2:0T=128\0K~1
O0J=0 ¢GETFIZ y EXZIDIMOTH(OT) t0E=02

FOROX=0TOOT IFIELDFIZy COEYASOTE y (OKIASOTSH (0T $0E=0B+0H INEXT ¢

FOROT=1TOMNRM ¢ l%FTOT%(Dd) =0KS (0X) 1 0J=0J+1 1 IFO0JE0TTHENPUTFIZ $0J=0

NEXTOLIERASEOTS I TFOJCH0THENFUTFIN

GETFIZy LILGETOL $= LHR%(JbS) LSETOZS=MKIS CEXX) tLSETOA$=MHIS (WRZ) ¢
LSETOS$=MKI$ (0A . BETOZ¢=0CH S FUTF LNy LICLOSEF LA SERZ=0 t RETURN

CREATE RECORD (KE$» RETURNSG: 0Ly 08y ERX)

GOSUESL0700 ¢ TFERX=3THENRETURNELSEGOSUESZ100
IFMNRZEE=0BTHENFORDJ=NRATOOESTER -1 $ SHAFOKS (0J+1) y OKS (0J) $NEXT

NRZ=NRZA1 $0X=05 S 0RKE (010 =KE$+MKI$ (085) tLSETOKS=KES {LLSETOM®%="M" ¢

CLSETOES:=MKTIS (08) ILSETOL $=MKT$ (0S) IFUTFIX » 083 ERY=0 I RETURN

DELETE RECORD (KE$r RETURNS: KES$y 0Ly 0SSy ERM)

GOSUES0700 ¢ TFERM=ZTHENRETURNELSEGOSUESZZ20 0 ENRE=NRZ-110T=0351¢
XFOX-=NRETHENFOROQJ=0LXTONRY $ SKEFOHS (00 » OHS (O0J+ 1) TREXT

08=0L. L TFOS-CH0TTHENGDSUEREAZZ00 :GOTOL0510

TF OO NFCA T HENER ¥ 3 RE TURNELSEOS=CUWE QRTGHTS CORKE (O » 230 2
FES=LEFTS COME COX Y » LD TERZ =0 TRETURN

REWINDG (RETURNS? Oy ERZS
O 0 X RRGE OTHEERZ =1 RETLRNEL SEERZ =0 T RETURN
SEARCH (KE$» RETURNS: 0L, 08y ERXD

OT=nRA ¢ OR=1 S TFLEN CKES) <5 KL ATHENMES =LEF TS (XES+ STRINGS (KL% ®

TFOE-==0TTHENOI=(OT+OEIN2:0T%=LEF TS (OKS (01 » KL YELSEERX =2 { RETURN

" KLID

IFUTL HESTHENOT=0I-1 tG0TOLH07 L OELSETFOTS-CHKES THENOE=0T+1 ¢ GOTOLH0710

QD =CVT (RIGHT S COKE COTY » 23 3 JERV=3ZIRETURN

GET RECORD (KE$» RETURNS: Oy 03 OEy Oy ERY)

GOSUES0700 L TFERY=2THENRETURN
ELGEGETFIX »DEI0E=CVI(OES) I0L.=CVL (OL$) S ERM=0 $ RETURN
GET HNEXT RECORD (RETURNS: KE$y 0X» 0S8y OEs Oy ERY)
TF O =NRZETHENER =1 RETURNELSEDI=0T+1 : 08S=CVL (RIGHTS (OKS$0T) » 23

HE$=0K4$ I 0E=CVT (0ES Y $0L=CVT (0L$) JERY=0 T RETURN

CGETFIZ 08¢

1999

.000

099

.100

1195

L1200
LZ10

1299

LN

c0un

2099

2100
2110
2199

2200

4

GET FREVIOUS RECORD (RETURNSS KE$; 0Ly 0S8y DE» Oy ERX)

IFOL<=1THENERZ=1 I RETURNELSEQX=0X~13 Oo«QUI(hIPHT%(OV$(UT)v2)).hFTFI/;ﬁ
KE$£=0K$ OE=CVI(OES$) 10L=CVT (0% SERY=0 I RETURN

CREATE EXTENT SECTOR (0OEy Oy RETURNE: 0S5y ERXD

GOSURAZ100 SGETFIN y OF $ LSETOLS=MKI$ (05 IFUTFIZ 02
aFTFI/;DL‘LGFTUl$ =MKI$G (0S) PFPUTFIX y O SGETFINy OS5 S LEBETOE S =M (0 3
LOSETOLE=MKIS (OL) tLSETOMS="E" IFUTFIXy 08 {ERYZ=0 {RETURN

DELETE EXTENT SECTOR (0Sy RETURNS: OE» Oy ERZD

GETFTZ 083 TFOMSG- " E* THENERZ=1 I RETURNELSEGOSUESZ2200
DETFIY%yOELSETOLS=MKI$ (OL) SFUTFIXy DS
GETFIZy 0L LSETOEE=MKIS (OE) $FUTFIXy OL $ERI=0 TRETURN

GET EXTENT SECTOR (0Sy RETURNS: OE» Qs ERZD -

GETFIYy 08 IFOMS- " B THENERY=1ELSEDE=CVT(OEE) 2 OlL=CVIL0L$) (ERZ=0
RETURN

GETUR (MR
DEFTNTOIDTMOMS (RIS TRETURN

SET NEW SECTOR (RETURNS: 08D

VT COL S) FLSEEX =00 1 S 0B=EXT
{1 ERETURN

TFOAH 0 THENGETFILZ » 0A t08=04 108
GETFIZy LILSETO3%=MIKI%(EXE) LG l..:'TfJ‘if._iﬂiff-i'ﬁlfIfE COEY IPUTFI My 1 SERK=

FREE OLD SECTOR (0Sy RETURNS: QEy Oy ERX)

CETETYZy 08 OE=CVUT (OES)Y $0OL=CUT COLS) SLSETOMSE="F " {LSETOLS=MHI® (0A) 10A=082
fUlFlarU”“UTUéZJLO

SECTION VII

MIKSAM

PEACHTREE SOFTWARETM

MIKSAM

Keyed Sequential Access Method

Multi Indexed

. 9/25/78

™

PEACHTREE

36

PEACHTREE SOFTWAREtm

MIKSAM

Multi Indexed Keyed Sequential Access Method

MIKSAM is a general purpose file access program written .
in Assembly Language to be used as a co-routine with Altair
or Microsoft BASIC. MIKSAM is called from BASIC whenever
MIKSAM file access is to be performed; BASIC is called from
MIKSAM whenever BASIC file access is to be performed.

MIKSAM requires about 7.5K of RAM, which includes about
1K for file buffers.

MIKSAM is distinguished by nine characteristics:

1) It allows for variable iength keys (up to 26 bytes each).
2) Records are of .fixed length (up to 251 bytes each).

3) There may be up to 255 orders of keys.
4) There may be up to 255 keys per record.

5) There may be multiple records per key (limited by
file space).

6) Records may be accessed randomly from any of its keys.
7) Records may be accessed randomly via its record pointers.
8) Records may be sequentially accessed.

9) Files.are dynamically self-policing; no extra update
or optimization programs are required,

There are ten BASIC commands that allow the user access
to MIKSAM:

BASIC Line Command
60000 SETUP
A0100 CREATE FILE
61000 OPEN FILE
61100 CLOSE FILE
61200 SEEK KEY
61300 CREATE KEY RECORD
61400 CREATE KEY
61500 DELETE KEY
61600 GET RECORD
61700 PUT RECORD

61800 FILE STATUS

Line

60000
60100
61000

61100
61200
61300

61400
61500
61600
61700
61800

MODE

RN S

MIKSAM QUICK REFERENCE

SETUP

CREATE FILE (NA$, DA$, FI%, DR%, FL%, NO§, ER%)

OPEN FILE (NA$, FI%, DR%, RA%(FI%), KE$(FI%),

PT! (FI%), ER%) .

CLOSE FILE (FI%, ER%) :

SEEK KEY (FI%, RA%(FI%), KE$(FI%),PT!(FI%), MO%, ER3)
CREATE KEY RECORD (FI%, RA%(FI%), KE$(FI%), PT!(FI%),
RE$ (FI%), ER%) - -
CREATE KEY (FI%, RA%(FI%), KE$(FI%), PT!(FI%), ER%)
DELETE KEY (FI%, RA%(FI%), KE$(FI%), PT!(FI%), ER%)
GET RECORD (FI%, PT!(FI%), RES(FI%), ER%)

PUT RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

FILE STATUS (FI%, RS$, ER%)

SEEK KEY MODES

DESCRIPTION

“"Rewind to first of RA% keys

Seek key on RA% and KE$

Seek next key

Seek next set

Scek Key Pointer on RA%, KE$ and PT!

Page

Offset

Key

Record Pointer

Node Pointer

Record

Node

MIKSAM TERMINOLOGY

A 256 byte area in logical file space comprised
of two BASIC records.

A byte value in the range p = Offset < 255.

An area of variable length from two to twenty-
eight bytes long. The first byte of this area :
is the length of the area (including itself

in the length count). The second byte of this
area is the rank number (RA%) of the Key
(1=primary, 2=secondary, etc.) up to 255 Ranks.
The remaining bytes comprise the key value
(KE$) as specified by the user.

A three byte (Page, Offset) pair which refers
to a Record in the file.

A three byte field containing a BASIC Record
number and #, used to reference a Node or Leaf.

An area containing data indexed by one or more
Keys. The first three bytes of the Record's
data area is reserved for future use. The
fourth byte of the Record's data area is a
reference count used to indicate how many

Keys refer to this Record. (f <« reference
count = 255. A reference count of § implies
the Record is cdeleted. Upon creation of a
file the Record's length is specified. This
length includes the four bytes of overhead
mentioned above, leaving length-4 bytes for
the user. These four bytes are automatically
skipped in the GET REC and PUT REC subroutines.
Within a BASIC program the user can assume

the Record length is four less than specified
at file creation time.

- A 128 byte area containing a one byte length

followed by alternating Node Pointers and

Keys followed by a final Node Pointer. Node
Pointers refer to Node or Leafs containing
Keys lexigraphically less than or equal to the
right-adjoining Key; the final Node Pointer
refers to a Node or Leaf containing Keys which
are lexigraphically greater than the last Key.

Leaf - A 128 byte area similar to a Node except that
all pointers refer to the Record associated
with the right-adjoining Key. The final
Pointer refers to the Record associated with
the Leaf's parent Key. The last pointer in
the file is a null pointer.

Tree Structure - MIKSAM data structure. The tree structure is
comprised of the "Root'" Node or Leaf. Each
" pointer from a Node refers to a lower level
Node or Leaf. All Leafs are on the same level
of the tree (equal to TREEHEIGHT) and pointers
from the Leaf refer to Records.

For further reference as to how the actual keys and

records are manipulated, see The Art of Computer sgience,

Volume III Sorting and Searching, p471-48 by E.D. Knuth

and Organization § Maintenance of Larger Ordered Indexes,

Acta Informatica 1, 173-189 (1972) by R. Bayer §& E. McCreight.

MULTI- INDEXED KEYED SEQUENTIAL ACCESS METHOD

(MIKSAM)

gHARACTERISTICS
1. Variable length keys (up to 26 bytes each).
2 Fixed length records (up to 252 bytes each).
3. Multiple-orders of keys (primary, secondary, etc.,

00 N\ U A
L] . . L]

up..to: 255 order levels).

Multiple keys per record (up to 255).

Multiple records per key (limited by file space only).
Random access to a record via any of its keys.

Random access to a record via its record pointer.
Sequential access to a record.

COMMAND SUMMARY

Line

60000 SETUP
60100 CREATE FILE (NA$, DA$, FI%, DR%, FL%, NO§, ER%)
61000 OPEN FILE (NA$, FI%, DR%, RA%(FI%), KE§(FI%),

PT! (FI%), ER%)

61100 CLOSE FILE (FI%, ER%)
61200 SEEK KEY (FI%, RA%(FI%), KE$(FI%),PT!(FI%), MO%, ER%)
61300 CREATE KEY RECORD (FI%, RA%(FI%), KE$(FI%), PT!(FI%),

RES (FI%), ER$%)

61400 CREATE KEY (FI%, RA%(FI%), KE$(FI%), PT!(FI%), ER%)
61500 DELETE KEY (FI%, RA$(FI%), KE$(FI%), PT!(FI%), ER%)
61600 GET RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

61700 PUT RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

61800 FILE STATUS (FI%, RS$, ER%)

DESCRIPTION OF USER FUNCTIONS

60000 - SETUP

This routine initializes the variables, allocates space
for the MIKSAM variables, and sets up the MIKSAM buffers.
No parameters are neceded.

41

DESCRIPTION OF USER FUNCTIONS

60100 - CREATE FILE (NA$, DA$, FI%, DR%, RL%, NO$, ER%)

61000 -

61100 -

Create a MIKSAM file on the disk. The file is not
opened after creation and must be explicitly opened
before use. There are seven parameters.

NA$ - the name of the MIKSAM file to be created, up
to eight bytes long. :

DA$ - an 8 character string representing the date in
‘the form MM/DD/YY.

FI% - a temporary file number.

DR% - the disk drive the file is to be created on

RL% - the fixed record length for this file, including
a 4 byte overhead for each record

NO$ - a string of up to 64 characters saved with the
file for user use only (e.g., user name, version,
system name, etc.)

ER% - an error number having the value:

0 - no error)
111 - a file with name NA$§ aleadt exists on
drive DR%.

OPEN FILE (NA$, FI%, DR%, RA%(FI%), KE$(FI%), PT!(FI%),
ER%)

Open a MIKSAM file on the disk. Initialize header
information and buffer. If ER%=§ the key index is
set to the first rank and key in the file. - The key
index is undefined otherwise. There are seven para-
meters:

NAS$ - the name of the MIKSAM file to be opened.
FI% - the file number for this file while opened.
DR% - the disk drive the file resides on.

the rank of the key to be created.
KES$ (FI%) the key of the record to be created.
PT! (FI%) pointer value to created record.

ER% - an error number having the value:

RA%(FI%)

0.~ no.error
112 - MIKSAM file with name, NA§ does not
exist on drive, DR%
103 - file is empty.
CLOSE FILE (FI%, ER%)

Close the opne file FI% and clear out any buffers
associated with this file. The header record is saved,
There are two parameters:

F1% - the file number of the file to bé closed
ER% - an error number having the value:

0 - no error
110 = no file FI% is currently opened.

42

61200 - SEEK KEY (FI%, RAS%(FI3), KES (FI%), PTI(FI%), MO3, ER%)

Set the key index to a new value determined by the RA$
KE§, MO%, parameter. There are six parameters:

FI% - the file number of the file to be sought
RA%(FI1%) depending on MO$% this Parameter specifies
the rank of the key to be found

depending on MO%, this parameter specifies
the key of the record to be found

the pointer of the key found or (if MO%=4)
the pointer of the key to be found

MO% - set the key index according to:

KE$ (FI3%)
PT!(FI$)

If MO%=# then réwind to the first of the
rank RA% keys. KE$ is set to the name
of this key.

If MO%=1 then set the key index to the
order specified by RA% and the key
specified by KE$. (SEEK KEY)

If MO%=2 then set the key index to the
next key in the file. RA% and KE$ are
set to this rank and key. (SEEK NEXT KEY)

If MO%=3 then set the key index to the next
record set, i.e., the next key different
from the current key. (Used when there
are multiple records per key in the file.)
RA% and KE% are set to this order and key.
(SEEK NEXT SET)

If MO%=4 then set key index to RA%, KE$, PT!.
(SEEK KEY POINTER)

ER% T an error number having the value:

" 0 - no error.
101

- end of Set
102 - end of Rank reached
103 - 1imit of File reached
105 - MODE%=1 and there is no rank=RANK%

with key=KEY$ in the file

61300 - CREATE KEY RECORD (FI%, RA%(FI%), KE$(FI%), PT!(FI%),

61400 -

RES, ERS

Create a new record having the value RES with rank RA%
and key KE§}. The key index is set to the key of the
record created. The key index is undefined if ER%#0.
There are six parameters:

FI% - the file number of the'file in which the
record 1is to created.

RA% (FI%) the rank of the key to be created.

KE$ (FI%) - the key of the record to be created.

PT! (FI%) - pointer value to created record.

RE$ - a string of length RL%-4 (Record Length)
containing the value of the record

ER% - an error number having the value:

0 - no error
120 - invalid key (parameter)
121 - no room in file

CREATE KEY POINTER (FI%, RAS%(FI%), KE$(FI%), PT!(FI%), ER%)

Create a new key for the current record and leave the
pointer at the created key. The current record is
pointed to from the key index set by a previous command.
The key index is set to the key created is ER%=0. The
key index is undefined if ER%#0. There are five para-
meters:

the file number of the file in which the key
is to be CREATEd.
) the order of the key to be created
KE$ (FI%) the key of the record to be created
PT! (FI%) pointer value to created record
ER% - an error number having the value

FI%

RA%(FI%

1

0 - no error
115 - Key Index not set
120 - invalid Key or parameter

121 - no room in file

o . 44

61500 - DELETE KEY POINTER (FI%, RA%(FI%), KES(FI$), PT!(FI%), ER3%)

Delete the key pointer to form the current key index from
the file. If this is the last key referring to a record,
the record is also deleted. The key index is set to the
next key after the deleted key. There are five parameters:
FI% - the file number of the file in which the Xkey .

is to be deleted

RA%(FI%) - the order of the key to be deleted

KE§ (FI%) - the key of the record to be deleted

PT! (FI%) - the pointer value of the record to be deleted
ER% - an error number having the value:

0 - no error
103 - end of file (last key in file deleted)
115 - Key Index not set

61600 - GET RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

Using the key index set by the SEEK command, get the
corresponding record and assign it to the string RES.
The length of RE$ must be RL%-4 (the fixed record
length for the file). The key index is unmodified by
this command. There are four parameters:

FI% - the file number of the file from which the
record is to be obtained

the pointer value to created record

a string which will contain the record value
obtained from the file

ER% - an error number having the value:

PT! (FI%)
RE$ (FI%)

0 - no error
115 - Xey Index has not been set

61700 - PUT RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

Using the key index, put into the corresponding record
the value of RE$. The length of RE$ must be RL%-4.

The key index is unmodified by this command. There are
three parameters:

FI% - the file number of the file into which the
record is to be placed

the pointer value to created record

a string which contains the record value
placed into the file.

ER% - an error number having the value:

PT! (FI%)
RE$ (FI%)

0 - no error _
115 - Key Index has not been set

45

61800 - FILE STATUS (FI%, FS§, ER%)

Obtain the status of the file with file number FI% as
of the last time the file was closed. Place the infor-
mation in the string FS$. The file must be opened to
use this command. There are three parameters:

FI% - the file number of the file whose status is to
be obtained :

FS$§ - a string containing the header information with
the following value:

BYTE

0-5 "MIKSAM"

6-7 Root of Tree
8-9 Extent of file

10-11 Record Length
12-13 Tree Height
14-15 First available node
16-17 First available record
18-19 First available record offset
20-27 Creation data (MM/DD/YY)
28-35 MIKSAM version date
36-63 Undefined '
64-128 NO$ - user defined area
ER% - an error number having the value:

0 - no error
110 - no file FI% is currently opened

DA$
DR$%
ER%
FI$%
FS$
KE$ (FI%)
MO%
NAS
NO$
PT! (FI%)
RA% (FI%)
RE$ (FI%)
RLS

=99 . <
101 5
102 2
103 s
105 7.=

110 =
111 =
112 -
LS =
120 -
121 =

RESERVED VARIABLE NAMES

Date in the form MM/DD/YY

Drive the file is mounted on

Error number

File number

File status when file was last closed
Key value for file FI$% ’
Mode for seek command

Name of file

Note (optionally user defined)
Pointer value to record in file FI%
Rank of key for file FI%

Record value for file FI%

Record length (includes 4 bytes overhead)

(8 alpha characters)
(integer)
(integer)

(integer)

(128 byte string)
(0-30 byte string)
(0-4 integer)

(0-8 byte string)
(64 byte string)

(4 byte number)
(0-255 integer)
(0-251 byte string)
(4-255 integer)

ERROR NUMBER MEANINGS

No error

BASIC defined errors

End of record set reached

End of rank reached

End of file reached :

In the SEEK KEY commands; MODE=1 and there is no rank=RA%,
key=KE$§ in the file or MODE=4 and there is no rank=RA%,
key=KE$, p01nter PTR! in the file.

No file FI% is currently opened

A file with name NA§$ already exists on drive DR%
File NA$ is not a MIKSAM file or does not exist
Key index not set

Invalid parameter

File length exceeds disk capacity

LIST OF VARIABLES FOR MIKSAM

DAS -60140
ER% -60000,

-61300,
FI% -60000,

-61300,
FS$ -61800
KES (-60000,
MO% -60000,
NAS -60100,
NOS$ -60140
03 (-60000,
of -60000,

-63040
op$ -60130,
01$ =501 30,
023 -60130,
03$ -60130,
04$ -60130,
05% -60130,
063 . -60130,
07% -60130,
083 -60130,
093 -60130,
OB -60000,
oI -60010,
oJ -60010,

60110,
61400,

60130,
61400,

61300,
61050,

60130,

61030,

61040,

60140,
60140,
60140
60140
60140
60140
60140
60140
60140
60140
60010,
61040,

61040,

60120,
62010

60150,
61800,

61400,
62010

61000,

61040,

61050,

60150,

60150

61040,

62000

62000

61010,

61030,

62010,

62010,

61030

61800

61100,

61030,

62000,

50

61020, 61030, 61040,
61040, 61050, 61100,
63020, 63030, 63040
63040

62010, 63000, 63020,

61040, 61100

63000

61110,

63030,

LIST OF VARIABLES FOR MIKSAM

oT

OT$

PT! (
RA% (
RES (

RL%

-61040,
-61700,

-60130,
-60000,
-60000,
~60000,

-60140

61050;
62010,

61030,
62010
61050,

61050,

61100, 61200, 61300,
63000

61100

t

62010
62010, 63040

51

61400,

61500,

61600,

959

1600

1o

20
1L 00
110
1L20
1'L30

1140
115

a0

010
D20
030

.40

050
090

100

-110

YREZLASTD
MULTI-INDEXED KEYED SEQUENTIAL ACCESS METHOD - MIKSAM

DEFINT 0f UBE=&HP2C30: DEFUSRZ=0E?3
DIM U%(q)’hn/(u)yhr$(q)yFTl(u)rRE%(q);O(?). FIZ%=1: ERZ=0: MOX=0
FOR O0I=8H8C TO &H23: FOKE OT+0E,25353 NEXT?S
FOR OI=&H?4 TO &HA3: FOKE OL+0Ey03 NEXTS
OJ=1¢ FOR OI=&M83 TO &H3A: FOKE OI+0Ey0J! 0J=0J+13 NEXT: FOKE OI+0E»03
RETURN

CREATE FYLE (NA$sDAS» FIZyRLMy NOS»ERZLD

ON ERROR GOTO &01103% NAME NAt A5 NAS

ERV=ERRS RESUME 40120

ON ERFROR GOTO 545003 IF ERZ=58 THEN ERX=111: RETURN
FLGE IF ERX<:53 THEN ERROR ERY ELSE ERY=0

OFEN"R® yFTZyNAGE FIELD FXIXr6 AS 0062 AS 01%y2 AS 02%,2 A8 03%»2 A8 095,
2 A5 05%s4 AS D6%8 A5 07$,8 AS 094,28 A8 O0T$,69 A5 D8%

LSET 00%="MIMSAM"$ LSET O1l¢=MHI$(2): LSET 024=01¢3 LSET O3%=MKIHRLL 3
LSET 04 mnHlI$(D): LSET 05%=04%: LSET 0&%=04%+04%¢ LSET O7¢=DA%S
LSET 08%=NQ$t LSET 094="0116/9"

FUT FIﬁy]. FIELD FI%y1l AS 0043 AS 0143 LSET 00%=CHR$(4) 3
LSET OL%=MKISE 0 +CHRSC0Y ¢ FUT FI¥%,23 CLOSE FIX: RETURN

OFEN FILE (NAS»FIX ROy KES » T 1 s ERY)
ON FERREOR GOTO &10103 NAME NAt A5 NAas
ERs vt RESUME 61020
O EREOR uUTU ‘% 00 IF ERX=S3 THEN ERX=1123 RETURN
FLSE IF ER¥C58 THEN ERROR ERZ ELSE ERZ=(
OFEN "KR® vrlérﬂ e FIELD FIXy128 AS 0% (FIX): FIELD FIXs& A8 OT4Hy14 A5 0063
GET FI¥y13 IF OT$<3"MIKSAM® THEN ERX=113% CLOSE FIX: RETURN
000 =E Y256 SFOROT=1T07 00T =0T MIDS (006 » OTH2-152) 3 INEXT S
DY =UERFTROOS (FIXY) $0 () =VARFTROERZ)Y § OT=&H326+0E 0J=&H348-+013
FOKEQT y OJAND 2SS 3 POKEOT+1 » ((OJ/256) AND2ES) 1 0T=8H350+0E OJ=8H352+0E 3
FOKEOT y OJANDZES SFOKEQT+1 » ((OJ/Z846 3 AND25S5) (COELES3000
RF%fkl/)““rALF$(D(3)). Fest(FI%y=0% MO%Z=03 OT=2% GOTO 462000

CLLOSE FILE (FIX»ERX)

ON EREROR GOTO 611103 FIELD FIZ»é6 AS OT#H»14 A8 00%: ON ERROR GOTO 543002
OT=1% GOSUR 6200023 GET FIXsl: OTE=""t FOR 0T=1 TO 73
DTT“DT$+MKIL(O(UT))2 NEXT: LSET Q0%=0T®%: FUT FIZ,1! CLOSE FIXI RETURN
RZ=1102 GOTO &35010

52

61190

SEEK KEY (FIXsRAKsKEEFT! »MOX» ERX)D
~ e

&1200 OT= GOTO 42000
&1290
CREATE KEY RECORD (FIZyRAZyHKES»FT! yRESyERX)
61300 IF LEN(KES(FIZ)Y=26 THEN ERZ=120: RETURN ELSE O0T7T=3: GATO 42000
61320
CREATE KEY FOINTER (FIVsROLKES»FPT! o ZRYD
&1400 IF LEN(ES(FIZ))26 THEN ERZ=120¢ RETURN ELSE QT=4%: GOTO 42000
61490
DELETE KEY FOINTER (FIZsyRAVyKEEyFT! s R
61500 DT—"‘ GOTO 2000
&1520
GET RECORD (FIXeFT! yRESERY)
61600 0OT=6¢ GOTO 42000
614690
FUT RECORD (FIXsPT!yRE$sERXM)
&1700 OT=78 GOTO 42000
&17720 ¢
FILE STATUS (FIXeFSHERX)
&1.800 GET FIZel3 l Se=0%FTXHI 0 RETURN
&L790
Calll. MIKSaM
0 OT=&H324+08: 0J=&H343+0EIFOKEQT » QJaNDZES I FOMEDQT+1 » ((U256 ANDZES Y $
OT=8H350-008 3 Q=35 2+08 FOMHEQOX » QJANDZES I FOKEQY+1 » (DU 258 ARD2SS
HGEN10 QD) =0T+FLHRZS6I 0Ly =VaRPTRORAZFTIXN) 2 10020 =VARPFTROES (RT3 3
O3 =UnRFTROFPTHOFTZD 33004 =UnRPTRORES (RO 1 1005 R TROERZD £ 0 CH Y =M%
GE000 OT=USRI (VARFTROOOY 32
ON FEERKCOE+&HLLY+L GOTO &63010+&3020+6303043049063050
A301L0 RETURN
3020 GET FIH00): GOTO 43000
&B030 FUT FIZ.0C0)¢ GOTO 43000
3040 KES(FIZ)=SFalCEs<00r
OCZ)=VARPTROKEES(FIZNI) OO =VARFTR(RES(FI%¥): GOTO 43000
&E050 GOTO 43000 OdCL)y= <FREE SFACE ON DISK:=: GOATO &3000

