
Altair Software Development using CP/M

Martin Eberhard 20 January 2011

This paper describes a simple environment for developing machine-code software for the Altair
Computer. Part of the goal is to develop software in the spirit of the period when the Altair was
commercially available, particularly when Altair software was loaded from paper tape.

Working with Altair Paper Tapes

Altair paper tapes were designed to be loaded via a Bootstrap Loader that may be toggled into the Altair
from the front panel, or ROM-resident in a tiny optional ROM. Because front panel toggling is tedious
and prone to errors, MITS went to extremes to minimize the length of the Bootstrap Loader – a typical
Bootstrap Loader is only 22 bytes long.

The Altair Paper Tape Format

An Altair paper tape comprises eight sections:

1. Null Leader. This is where the paper label gets pasted, and is never read by the computer. It
should be long enough to wrap around the roll of paper tape and protect it.

2. Leader. This is typically 64 to 256 bytes of a specific character that is ignored by the bootstrap
loader. Note that the specific character differs between versions of MITS software.

3. Checksum Loader. This program gets loaded and executed by the Bootstrap Loader. It loads the
Program File, verifies correct load, and executes the program. It is written on the paper tape in
reverse-order.

4. Checksum Loader Gap. This is a string of nulls after the Checksum Loader and before the
Program File. On earlier versions MITS software, this gap was 0 bytes long. On newer versions, it
is about 12 bytes long. This gap gives the Checksum Loader time to initialize, (though it seems
unnecessary as the initialization is fairly quick.)

5. Program File. This is the program that will be executed, for example, Altair Basic. It is written as
a sequence of checksummed records.

6. Go Record Gap. This is a string of nulls after the Program File and before the Go Record. On
earlier versions of MITS software, this gap was 0 bytes long. On newer versions, it is about 12
bytes long. (This gap seems unnecessary, as it takes no more time for the Checksum Loader to
get ready for a Go Record than it takes to get ready for another Program File record.)

7. Go Record. This is a 3-byte sequence that tells the Checksum Loader where to begin execution.
Most (all?) MITS programs execute at 0000h.

8. Null Trailer. This is a length of blank tape at the end that is not read by the computer. It should
be long enough to protect the end of the Go Record from abuse caused by paper tape winders,
etc. I suggest at least 18” of Null Trailer.

Bootstrap Loader

The Bootstrap Loader loads the Checksum Loader from the beginning of the paper tape into memory
(last byte first), and then executes it. The paper tape must start someplace in the Leader, and the

Bootstrap Loader will ignore the Leader characters to find the beginning of the Checksum Loader. The
Checksum Loader’s load address is hard-coded into the Bootstrap Loader.

MITS published several different Bootstrap Loaders – one for each of the several I/O ports that they
supported. They also changed these Bootstrap Loaders with different versions of their Checksum Loader
(which changed a couple of times as MITS published newer versions of Altair Basic).

For each IO port’s Bootstrap Loader, only one byte changed as they revised the Checksum Loader. This
byte both defines the ignored Leader character and also is the length of the Checksum Loader + 1.

The various versions of the Altair Bootstrap Loader are printed in the Altair manuals. Here is the
Bootstrap Loader for the 88-2SIO board. Note that the byte at Address 011 changes with Basic version.

 Octal Address Octal Data Comment
 000 076 RESET 2SIO PORT 0
 001 003
 002 323
 003 020
 004 076 INITIALIZE 2SIO PORT 0
 005 021 2 STOP BITS (025 FOR 1 STOP BIT)
 006 323
 007 020
 010 041 HL=LAST ADDRESS OF CHECKSUM LOADER
 011 302 256 FOR BASIC 3.2, 302 FOR BASIC 4.X
 012 0X7 017 FOR 4K, 037 FOR 8K, 077 FOR EXT.
 013 061 SET UP STACK FOR EFFICIENT RETURNS
 014 032 STACK IS RIGHT AT THE END OF THIS CODE
 015 000
 016 333 GET READER STATUS
 017 020
 020 017 RRC: TEST RX DATA REG FULL
 021 320 RETURN IF NO DATA YET
 022 333 GET READER DATA
 023 021
 024 275 CMP L: IS THIS A LEADER CHARACTER?
 025 310 RETURN IF SO
 026 055 DCR L: CHECKSUM LOADER LOADS LAST FIRST
 027 167 PUT CHECKSUM LOADER BYTE IN MEMORY
 030 300 RETURN IF L<>0 - NOT DONE YET
 031 351 PCHL: JUMP TO CHECKSUM LOADER
 032 013 RETURN ADDRESS ON THE STACK
 033 000

Checksum Loaders

MITS used a couple of different Checksum Loaders with different versions of their software. The primary
difference was how they interpreted the front panel switches, used to specify the port used for loading,
and also to specify the port used as a console by the loaded program. Because the switch settings are
used by both the Checksum Loader and by the loaded program (e.g. Altair Basic), you must use the

correct checksum loader for a given program. (For example, using the Checksum Loader for Altair Basic
version 4.1 with the program file for Altair Basic version 3.1 will yield undesirable results.)

Here is how the Checksum Loader and Altair Basic version 4.X interpret the front panel switches.
Switches A8-A11 define the Load Port (used by the Checksum Loader), and switches A12-A15 determine
the Console Port for Altair Basic. The switches are interpreted as follows:

 Switch
A15 A14 A13 A12
A11 A10 A9 A8 PORT CHANNELS (OCTAL ADDRESSES)
 0 0 0 0 2SIO, 2 STOP BITS 20, 21
 0 0 0 1 2SIO, 1 STOP BIT 20, 21
 0 0 1 0 SIO 0, 1
 0 0 1 1 ACR (Cassette) 6, 7
 0 1 0 0 4PIO 40, 41, 42, 43
 0 1 0 1 PIO 4, 5
 0 1 1 0 HSR (High-Speed Reader) 46, 47

Note that neither the ACR nor the HSR should be assigned to be the Console Port.

The version of the Checksum Loader that was meant for Altair Basic 4.X uses a table (beginning at
address XXACh) to specify the behavior of the supported I/O ports. Each table has 3 entries: the Control
Port address, either a “JZ” instruction or a “JNZ” instruction, and a “Receiver Data Ready” bit mask. The
Data Port address is assumed to be one greater than the Control Port address for all supported ports.
The JZ/JNZ byte specifies the polarity of the Receiver Data Ready bit in the Control Port: JZ means active-
high ready bit; JNZ means active-low. The bit mask simply masks off all bits read from the Control Port
except the Receiver Data Ready bit.

Because of its table-driven nature, changing or adding a load port to this Checksum Loader is relatively
simple: replace one of the table entries with the required values for your new port. Note that changing
the Checksum Loader’s table will not make your new port work with Altair Basic, which has its own table
that must be found and modified.

If you add a new load port to this table, it will take switch setting 0111, and you must also change the
maximum allowed switch value (address XX21h) in the Checksum Loader. Additionally, since adding
another table entry will change the length of the Checksum Loader, you must change one byte in the
Bootstrap Loader, and change the Leader Character, since these are both equal to the length of the
Checksum Loader + 1. For this reason, it is a lot easier to replace a table entry (for example the HSR
entry) with the parameters for your new Load Port.

The source code for the Altair Checksum Loaders that came with Altair Basic version 3.2 and 4.1 are
published together with this document.

The Program File

The Program File comprises a number of Program Load Records. These are generally written in
ascending address-order, with the exception of the first Program Load Record, the one that loads at
address 0000h. This Program Load Record is generally loaded last, so that the bootstrap loader will still
be in memory should a checksum error occur during loading.

The Program Load Record begins with a 3Ch, followed by a 1-byte Program Byte Count, and a 2-byte
Memory Load Address where this block should be stored, low address byte first. Next is a variable

number of bytes of program data, as specified by the Program Byte Count. The block ends with a 1-byte
Checksum, which is simply the sum, truncated to one byte, of all the bytes of data in the Record,
including the low and high Memory Load Address bytes, but not including the Sync Byte and the
Program Byte Count:

 Byte Hex Value Function

0 3Ch sync byte

1 NN Program Byte Count

2 ll Low byte of Memory Load Address

3 hh High byte of Memory Load Address

4 <NN bytes> NNN bytes of program data

NN+4 cc Checksum byte

The Go Record

The paper tape data ends with a Go Record comprising one byte of 78h followed by the 2-byte Go
Address of the program. When the Checksum Loader encounters a Go Record, it jumps to the specified
address.

 Byte Hex Value Function
0 78h Sync byte

1 ll Low byte of Go Address

2 hh High byte of Go Address

The Development Environment

This is a CP/M 2.2-based development environment, using Digital Research’s assemblers, ASM or MAC.
You can run CP/M 2.2 native on a CP/M machine, or you can run CP/M in emulation on a PC running
DOS.

CP/M 2.2 under DOS

To run CP/M 2.2 under Microsoft DOS, you need a program called 22NICE.COM, which is an excellent
CP/M emulator, written by Sydex. You can download a “trial” version of this program from
http://www.cpm80.com/ or from http://www.gaby.de/edownl.htm. Though Sydex no longer offers
22NICE.COM for sale, if you contact them at www.sydex.com, they will probably sell you a license as
they did for me. (While you are at it, purchase a copy of 22DISK.COM, which enables a PC to read and
write CP/M-compatible disks.)

22NICE.COM works great in a DOS window under Windows XP. (I have not tried it under Vista or
Windows 7.) 22NICE.COM even works great in a DOS window under Windows XP that in turn is running
under VMware Fusion on a MacBook Pro, which I find greatly amusing.

The Assembler and Loader

22NICE.COM requires you to run any .COM file through their GENCOM.COM utility to make it executable
in their environment. For Digital Research’s ASM, you would type “GENCOM ASM.COM”. This will
rename ASM.COM to ASM.CPM and create a tiny run file called ASM.COM. Now ASM will work as it is
supposed to – at the DOS prompt, you can type “ASM MYFILE” to assemble MYFILE.ASM. You will need
to do the same thing with LOAD.COM: “GENCOM LOAD.COM”. If you want to use MAC (Digital
Research’s Macro Assembler), then you will need to run MAC.COM through GENCOM as well.

http://www.cpm80.com/
http://www.gaby.de/edownl.htm
http://www.sydex.com/

You will likely want to create a little DOS batch file for assembling programs, called MAKE.BAT:
ASM %1
LOAD %1
GENCOM %1

This will make a 22NICE-executable file from MYFILE.ASM when you type MAKE MYFILE.

You can download Digital Research’s ASM and LOAD at http://www.retroarchive.org/cpm/os/os.htm
(download the file called STDCPM22.ZIP.) If you want to use the macro-assembler, you can download
MAC at http://www.cpm.z80.de/binary.html (Look for the link called MAC BINARY.)

Debugger

Digital Research’s DDT works great in this environment. I generally have a DEBUG definition in my code
that turns off hardware accesses so that I can debug basic functionality in the 22DISK environment.
Again, you will need to run DDT through GENCOM.

Editor

For that true retro feel, you can use Digital Research’s ED (available the same place as ASM and LOAD).
Or you can use your favorite CP/M screen editor such as WordStar. I recommend using the DOS
NOTEPAD editor for simple, reliable text editing when using the 22NICE.COM environment. You can also
use WORDPAD, though its tabs are inconsistent with NOTEPAD.

Note that if you use an Apple-based text editor such as the default TextEdit program, you will have
problems because Mac’s use only a Carriage Return to indicate end-of-line, whereas both CP/M and DOS
use a Carriage Return-Line Feed for end-of-line. There are a few Mac-based text editors, such as Text
Wrangler that will allow you to change the end-of-line character string to be CP/M compatible.

Working Directory

I strongly recommend running 22NICE.COM in a directory close to the root because of DOS’s file-name
limitations. I suggest creating a directory called “C:\CPM” for this purpose. In this directory, you should
have the following files:

 22NICE.COM

 CSAVE.COM (one of 22NICE’s files)

 GENCOM.COM (another 22NICE file)

 MAKE.BAT (Your MAKE batch file)

 ASM.COM (created by GENCOM)

 ASM.CPM (renamed by GENCOM)

 LOAD.COM (created by GENCOM)

 LOAD.CPM (renamed by GENCOM)

 DDT.COM (created by GENCOM)

 DDT.CPM (renamed by GENCOM)

 MYFILE.ASM (whatever program you are creating)

 MYFILE.HEX (created by ASM)

 MYFILE.PRN (created by ASM)

 MYFILE.CPM (created by LOAD and renamed to have .CPM extension by GENCOM)

 MYFILE.COM (created by GENCOM)

http://www.retroarchive.org/cpm/os/os.htm
http://www.cpm.z80.de/binary.html

Some Useful Tools

I’ve found or written a few tools to be very useful for working with paper tape files. Here are the one
that I have found:

Hex File Editor

It is sometimes very useful to edit binary file directly in hex. For example, some of the tape files for Altair
Basic that I have found on the web have junk at the end, because the original file was not an even
multiple of 128 bytes, and DOS filled in the end with junk (usually 55H). With the right editor, you can
trim off this junk or replace it with nulls. Also, when creating tape files, it is useful to look at the results.

For this purpose, I use the program called XVI32.COM, which runs under Windows. You can get it for
free here: www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm, though it would be classy to
donate at this website.

Terminal Program

You will need a program that can send binary files to an RS-232 serial port, perhaps via a USB-to-RS232C
dongle. Unfortunately, many of the available terminal programs do a bad job with binary files, for
example, eating (and failing to transmit) EOF characters. The one I found that works is RealTERM version
2.0.0.57. (Note that the preceding version of this program had the “eats EOF characters” problem!)

You can get RealTERM here: http://realterm.sourceforge.net/

Also, not all USB-to-RS-232C dongles do the right thing with binary files – some tend to eat XON and
XOFF characters, or eat nulls.

Utilities Written by Me

I have written a few useful CP/M utilities for creating Altair paper tapes. They are briefly described here,
and their source code and executable code are published with this document.

PUNCH.COM, PUNVER.COM, and TREAD.COM all are useful if your reader/punch is a Teletype or similar
device that communicates via 20 mA current loop, since few PCs support 20 mA current loop. In
essence, the Altair serves as a level translator and buffer.

MAKEALT.COM

MAKEALT.COM creates an Altair paper tape file from components. You supply the Program File (in
binary, hex, or Altair paper tape format), the Checksum Loader (in hex format), the sizes of the various
gaps and leaders on the tape, and an optional human-readable banner that will be punched in the Null
Leader. MAKELAT.COM will produce a .TAP file that can be sent directly to a paper tape punch to create
a bootable tape.

If you want to replace the Checksum Loader on an existing paper tape fie (for example, to support a new
Load Port), you can use MAKEALT.COM to do this: “MAKEALT OUTPUT.TAP=INPUT.TAP CHKSUM.HEX”.

http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
http://realterm.sourceforge.net/

PUNCH.COM

PUNCH.COM is a brief Altair program that reads a binary file from the 2SIO port 1, and writes it to 2SIO
port 0. The two ports can be at different baud rates. Flow control is via RTS/CTS hardware handshaking.
The program incorporates a 256-byte buffer, so that the program will work correctly even with a
transmitter that does not respond immediately to handshaking.

The idea of PUNCH.COM is to connect port 1 to a PC and port 0 to a paper tape punch (such as a
Teletype). The PC can send a tape file to its RS232C port, and the Altair will convert to the right baud
rate and communications protocol to create a paper tape.

PUNCH.COM gets loaded and runs at address 100h. (This way, a bootstrap loader can remain at address
0.)

PUNVER.COM

PUNVER.COM is another brief (front panel loadable) program. This program reads a file from port 1, and
another from port 0. It compares the two programs until a difference is encountered. When a difference
is encountered, the program stops the reader on port 0 (if the reader has a run/stop control), stores
information about the difference in memory, and executes a HALT.

Note that PUNVER.COM is not useful for debugging a PC serial port/terminal program that eats certain
characters (for example an EOF character), since the same characters that got stripped out when the
tape was punched will get stripped out during verify.

PUNVER.COM gets loaded and runs at address 300h. (This way, you can have both PUNCH.COM and
PUNVER.COM in memory at the same time.)

TREAD.COM

TREAD.COM is the reverse of PUNCH.COM, reading from paper tape on port 0, and sending the file to
port 1. This program allows you to read a paper tape into a PC. It ignores leading nulls on the tape.

TREAD.COM loads and runs at address 0.

An Example

I have a Ghielmetti FER204A high-speed paper tape reader, perfect for loading Basic really quickly. This
device communicates via RS232C, and uses hardware handshaking for flow control. I want to load paper
tapes with this device using Port 1 of my 88-2SIO, and with a Teletype ASR33 as the console on Port 0. I
also want to use Port 1 for sending files from the PC to the Teletype, to be punched on tape, so Port 1
needs to be wired as a standard RS232C port with hardware flow control.

Wiring the Altair 88-2SIO

My Teletype has a Hewlett Packard modification that allows remote control of the punch. This
modification requires +12V and -12V as well as RTS to enable this feature. Details of this modification
and how to use it are documented elsewhere.

The Ghielmetti FER204A’s DB25 connector is pinned out like this:

Pin RS232C Sig Direction Polarity Note

2 TxD FER204A RS232C Standard Paper tape data

3 RxD FER204A Not Used

4 RTS FER204A Active Low Same as pin 20 (DTR) (1)

5 CTS FER204A Active Low Drive pins 5 & 6 together

6 DSR FER204A Active Low Drive pins 5 & 6 together

7 GND Signal Ground

20 DTR FER204A Active Low Same as pin 4 (RTS) (1)

(1) The FER204A was slightly modified to make this signal active-low.

Port 1
I wired the Port 1 of the Altair 88-2SIO to connect to the high-speed paper tape reader this way:

Port 1 Onboard Setup (9600 Baud, RS232C, hardware handshaking)

Signal Connect Connect

RxD E3 – J1 J2 – S2.7

TxD E5 – N6 N5 – S2.8

CTS E2 – I2 I1 – S2.1

DCD E1 – J3 J4 – S2.2

RTS E4 – N8 N7 – S2.3

GND S2.4 – S2.10

Baud Rate CLK1 – 9600

Port 1 Wiring Harness (Standard RS232C pinout, compatible with a 25-pin to 9-pin PC-type serial cable)

P1 Pin Wire Color DB25P Pin 8250 Signal RS232C Signal Direction

1 Brown 4 CTS RTS Port 2SIO

2 Red 20 DTR DCD Port 2SIO

3 Orange 5, 6, 8 RTS CTS, DSR, DCD 2SIO Port

4 Yellow 7 GND

5 Green

6 Blue

7 Violet 2 RxD TxD Port 2SIO

8 Gray 3 TxD RxD 2SIO Port

9 No Wire

10 Black 1 Protective GND

Port 0
I wired Port 0 of the Altair 88-2SIO to connect to my Teletype this way:

Port 0 Onboard Setup (110 baud, 20 mA current loop, RTS output used to enable TTY punch)

Signal Connect Connect Connect Connect

RxD D3 – K12 K11 – Y7 Y8 – S1.6 Y9 – S1.7

TxD D5 – L1 Z2 – S1.5 S1.4 – S1.10

PTR Enable D4 – L2 IC L.4 – M3 (1) M4 – S1.3

-12V IC N.1 – S1.8 (1)

+12V IC N.14 – S1.9 (1)

Baud Rate CLK0 – 110 Baud

(1)These connections are made on the solder-side of the 2SIO

Port 0 Wiring Harness (non-standard 20 mA current loop pinout)

P1 Pin Wire Color DB25P Pin Signal Name Direction

1 Brown N/C

2 Red N/C

3 Orange 19 –PTR Enable 2SIO TTY

4 Yellow 3 TxD Return (GND) 2SIO TTY

5 Green 13 TxD 2SIO TTY

6 Blue 11 RxD TTY 2SIO

7 Violet 2 RxD Return TTY 2SIO

8 Gray 17 -12V 2SIO TTY

9 White 18 +12V 2SIO TTY

10 Black 1 GND

Modifying the Checksum Loader

I decided to replace the Altair Basic 4.X Checksum Loader’s HSR option with an option that allows
loading from Port 1 of the 2SIO. This required replacing the last 3-byte load port table entry with one
that supports the 2SIO. This means that front panel switches A11…A8=0110 will select 2SIO Port 1 for

loading. I used my own program, MAKEALT.COM, to replace the Checksum Loader on the original MITS
.TAP files. I used my own PUNCH.COM program to punch the tape using the Teletype.

Modified Table:

3FAC 11CA01 LPTABL: DB SIO2R0,JZ,SIO2RDF ;0=2SIO PORT0, 2 STOP BITS

3FAF 11CA01 DB SIO2R0,JZ,SIO2RDF ;1=2SIO PORT0, 1 STOP BIT

3FB2 01C201 DB SIORXD,JNZ,SIOIDR ;2=SIO PORT

3FB5 07C201 DB ACRRXD,JNZ,ACRIDR ;3=ACR PORT (CASSETTE)

3FB8 21CA80 DB PIO4DA0,JZ,PIO4RDF ;4=4PIO PORT

3FBB 05CA02 DB PIORXD,JZ,PIORDF ;5=PIO PORT

 ; DB HSRRXD,JZ,HSRRDF ;6=HSR PORT (HI-SPEED RDR)

3FBE 13CA01 DB SIO2R1,JZ,SIO2RDF ;6=2SIO PORT1

Modifying the Boot Loader

The boot loader also requires a few minor modifications to load from the 88-2SIO Port 1. (Changes are
shown in bold.):
 Octal Address Octal Data Comment

 000 076 RESET 2SIO PORT 0
 001 003
 002 323
 003 022 CONTROL PORT
 004 076 INITIALIZE 2SIO PORT 1
 005 025 2 STOP BITS (025 FOR 1 STOP BIT)
 006 323
 007 022 CONTROL PORT
 010 041 HL=LAST ADDRESS OF CHECKSUM LOADER
 011 302 256 FOR BASIC 3.2, 302 FOR BASIC 4.X
 012 0X7 017 FOR 4K, 037 FOR 8K, 077 FOR EXT. BASIC
 013 061 SET UP STACK FOR EFFICIENT RETURNS
 014 032 STACK IS RIGHT AT THE END OF THIS CODE
 015 000
 016 333 GET READER STATUS
 017 022 STATUS PORT
 020 017 RRC: TEST RX DATA REG FULL
 021 320 RETURN IF NO DATA YET
 022 333 GET READER DATA
 023 023 DATA PORT
 024 275 CMP L: IS THIS A LEADER CHARACTER?
 025 310 RETURN IF SO
 026 055 DCR L: CHECKSUM LOADER LOADS LAST FIRST
 027 167 PUT CHECKSUM LOADER BYTE IN MEMORY
 030 300 RETURN IF L<>0 - NOT DONE YET
 031 351 PCHL: JUMP TO CHECKSUM LOADER
 032 013 RETURN ADDRESS ON THE STACK
 033 000

Using This Configuration

To load Basic 4.1 from the FER204A high-speed paper tape reader:

(1) Load the above bootstrap loader into the Altair at address 0.
(2) Examine address 0
(3) Set the Altair’s front panel switches A15…A8 = 00000110 (only A9 and A10 up). This selects the

Teletype on Port 0 as Basic’s console, and the FER204A on Port 1 as the load device.
(4) Set the paper tape into the FER204A, so that the reader head is somewhere in the Leader.
(5) Toggle the Altair’s RUN switch.
(6) The FER204A will begin reading, and in a few moments, the Basic sign-on dialog will be printed

on the Teletype.

